

PHASE 2 SITE CONTAMINATION ASSESSMENT

19 Queen Street NARELLAN NSW 2567

This Report Replaces Report No. 9528.01a.TSCA Please return or destroy all copies of Report No. 9528.01a.TSCA

PHASE 2 SITE CONTAMINATION ASSESSMENT

CLIENT: Primary Health Care C/O Shellshear Young Pty Ltd

SITE: 19 Queen Street, NARELLAN NSW 2567

REPORT NUMBER: 9528.01b.TSCA

DATE OF REPORT: 17 October 2016

CONSULTANT:

Justin Thompson-Laing BSc (Hons)

GETEX PTY LIMITED

Suite 2.02, Level 2, Waterloo Business Park 35 Waterloo Road, Macquarie Park NSW 2113 Phone: (02) 98892488 Fax: (02) 98892499 Email: help@getex.com.au Web: www.getex.com.au

DOCUMENT CONTROL

Revision Number	Revision Date	Document Number	Author	Author Signature	Reviewer	Reviewer Signature
Revision 0	29/08/16	9528.01.TSCA	Justin Thompson- Laing BSc (Hons)		Anthony Camus BE(Chem) (Hons)	
Revision 1	11/10/16	9528.01a.TSCA	Justin Thompson- Laing BSc (Hons)		Anthony Camus BE(Chem) (Hons)	
Revision 2	17/10/16	9528.01b.TSCA	Justin Thompson- Laing BSc (Hons)		Anthony Camus BE(Chem) (Hons)	

TABLE OF CONTENTS

1.	EXECUTIVE SUMMARY	. 6
2.	BACKGROUND	. 8
3.	SCOPE	. 8
4.	LIMITATIONS	
5.	SITE IDENTIFICATION	
6.	DESCRIPTION OF SITE AND SURROUNDING ENVIRONMENT	13
6.1	Lot 2 DP 1085432	13
6.2	Surrounding Area	13
6.3		14
7.	TOPOGRAPHY, GEOLOGY, HYDROLOGY AND HYDROGEOLOGY	15
7.1	Topography	15
7.2	Geology	15
7.3	Hydrology	16
7.4		16
8.	SITÉ HISTORY	
8.1		18
8.2		18
9.	POTENTIAL CONTAMINATION ISSUES	
10.	SAMPLING AND ANALYSIS PLAN	
10.1		22
-	0.1.1 State the Problem	
	D.1.2 Identify the Decision	
	0.1.3 Identify Inputs into the Decision	
	0.1.4 Define the Study Boundaries	
	0.1.5 Develop a Decision Rule	
	0.1.6 Specify Limits on Decision Errors	
-	0.1.7 Optimise the Design for Obtaining Data	
10.2	1 5 5	26
10.3	1 5 5	34
		36
		38
11.1	- 9	38
11.2		38
11.3		38
11.4		40
11.5		40
11.6		40
12.		41
13.	DISCUSSION	
13.1		42
		42
	y	42
	3.3.1 TRH	
	3.3.3 Metals 3.3.4 PAHs	
	3.3.4 PAHs	
	3.3.5 Phenois	-
13	3.3.7 PCBs	+3

13.3.8	VOCs	43
13.3.9	Ammonia	44
13.3.10	Asbestos	44
13.4 Gro	undwater Analytical Discussion	44
13.4.1	ТРН	44
13.4.2	BTEX	44
13.4.3	Metals	44
13.4.4	PAHs	44
13.4.5	Phenols	45
13.4.6	VOCs	45
13.4.7	EC	45
13.4.8	рН	45
13.5 Tan	k Water Analytical Discussion	45
13.5.1	ТРН	45
13.5.2	BTEX	-
13.5.3	Metals	
13.5.4	PAHs	46
13.5.5	Phenols	46
13.5.6	VOCs	46
13.5.7	EC	46
13.5.8	рН	
13.6 Res	sponse to Identified Decisions	46
13.6.1	Risks to Future Onsite and Offsite Receptors from Soil Contamination	
13.6.2	Risks to Future Receptors from Groundwater Contamination	
13.6.3	Risks to Future Receptors from Underground Detention Tank Contamina	tion.47
13.7 Wa	ste Classification	47
13.7.1		
13.7.2	Classification of Natural Soil and Bedrock	
14. CONC	CLUSIONS AND RECOMMENDATIONS	48

APPENDIX I	SITE MAP
APPENDIX II	BOREHOLE LOGS
APPENDIX III	ANALYSIS RESULTS
APPENDIX IV	LABORATORY ANALYSIS REPORTS
APPENDIX V	QUALITY ASSURANCE / QUALITY CONTROL
APPENDIX VI	SAFEWORK SEARCH DOCUMENTS

Figure 1. Site Locality Map	12
Figure 2. Project Area and Proposed Project Plan	12
Figure 3. Site Sketch	APPENDIX I
Figure 4. Groundwater Well Site Sketch	APPENDIX I

Table 5-1: Site Identification Details	11
Table 7-1: Summary of Groundwater Bores	16
Table 8-1: Site History Summary	17
Table 9-1: Conceptual Site Model Summary	21
Table 10-1: Decision Rules	24
Table 10-2: Sampling and Analysis DQO Summary	26
Table 10-3: Sample Information	34

Table 10-4: Groundwater Sample Information	
Table 10-5: Surface Water Sample Information	

1. EXECUTIVE SUMMARY

GETEX PTY LTD was engaged by Shellshear Young Pty Ltd on behalf of Primary Health Care to undertake a Phase 2 Site Contamination Assessment of the property located at 19 Queen Street, NARELLAN NSW 2567 (the Site). The objective of the investigation was to determine the type, extent and level of below ground contamination to determine the likelihood for the Project Area within the Site to be suitable for a proposed development. The Project Area is a proposed development which involves the alterations, additions and fit out for a new medical centre within the existing two storey commercial building. The new facility will generally be contained within the footprint of the existing building. The project includes reconfiguration of the existing external carpark and grounds to provide dedicated parking associated with the medical centre.

The assessment was based on information obtained from a soil and groundwater sampling and analysis regime focusing on the issues that were raised in the Phase 1 Preliminary Site Contamination Investigation Report prepared by Getex (Report No 9528.01.PSCA dated 16th of June 2016).

The scope of the investigation comprised of:

- A review of the Phase 1 Preliminary Site Contamination Investigation Report prepared by Getex Pty Ltd;
- Undertaking a subsurface soil sampling and analysis regime on the Site that included:
 - The collection of samples from 16 locations selected to focus on the soil affected by sources of potential contamination.
 - The following analysis regime:
 - i. 41 Samples analysed for Metals (As, Cd, Cr, Cu, Hg, Pb, Ni & Zn);
 - ii. 33 Samples analysed for Total Recoverable Hydrocarbons (TRH);
 - iii. 33 Samples analysed for Benzene, Toluene, Ethyl Benzene and Xylenes (BTEX);
 - iv. 30 Samples analysed for Polycyclic Aromatic Hydrocarbons (PAHs);
 - v. 12 Samples analysed for Phenols;
 - vi. 4 Samples analysed for Organochloride Pesticides / Organophosphate Pesticides (OCPs/OPPs);
 - vii. 8 Samples analysed for Polychlorinated Biphenyls (PCBs);
 - viii. 6 Samples analysed for Volatile Organic Compounds (VOCs) (other than BTEX);
 - ix. 6 Samples analysed for Ammonia; and
 - x. 8 Samples analysed for Asbestos.
- Undertaking a groundwater sampling and analysis regime on the Site that included:
 - The collection of samples from 3 locations selected to focus on migrating groundwater from the former landfill east of the Site.
 - The following analysis regime:
 - i. 3 samples analysed for Total Petroleum Hydrocarbons (TPH);
 - ii. 3 samples analysed for Benzene Toluene Ethyl-Benzene Xylenes (BTEX);
 - iii. 3 sample analysed for Metals;
 - iv. 3 sample analysed for Polycyclic Aromatic Hydrocarbons (PAHs);

- v. 3 sample analysed for Phenols;
- vi. 3 sample analysed for Volatile Organic Compounds (VOCs); and
- vii. 3 sample analysed for EC and pH.
- Undertaking a water sampling and analysis regime on the Underground Detention Tank that included:
 - $\circ\,$ The collection of a water sample from 1 location selected within the Underground Detention Tank
 - The following water analysis regime:
 - i. 1 sample analysed for Total Petroleum Hydrocarbons (TPH);
 - ii. 1 sample analysed for Benzene Toluene Ethyl-Benzene Xylenes (BTEX);
 - iii. 1 sample analysed for Metals;
 - iv. 1 sample analysed for Polycyclic Aromatic Hydrocarbons (PAHs);
 - v. 1 sample analysed for Phenols;
 - vi. 1 sample analysed for Volatile Organic Compounds (VOCs); and
 - vii. 1 sample analysed for EC and pH.
- Prepare a report for the purpose of determining the likelihood for the Project Area to be suitable for the proposed development based on the results of the investigation.
- The results from the soil sampling and analysis will also be used to provide a soil classification for offsite disposal of soil.

The investigation was limited to assessing the suitability of the Project Area within the Site as illustrated in Figure 2 of this report.

The soil profile at the Site consisted of a dark brown loam topsoil where no hardstand cover was present. At locations BH6 and BH14 beneath the topsoil was brownish yellow sand with rock fragments and gravel to a depth ranging between 0.8-1.2m. In areas with the bitumen and roadbase ground cover, beneath this cover fill material was encountered to between 0.3m and 1.2m. Strong brown silty clay was then encountered across the Site to between 0.4m and 1.1m followed by shale that generally increased in strength as depth increased.

Groundwater was encountered at depths ranging from 7.5m (GW1), 8m (GW2) and 9.5m (GW1).

Soil samples taken from locations across the Project Area were analysed for a broad range of identified potential contaminants. All chemical contaminant concentrations were below the adopted criteria and PID and Landfill Gas analysis of soil headspace for VOCs and CH₄ respectively was within acceptable levels. As such, the detected chemical contaminant concentrations within soils do not indicate an unacceptable risk to human and environmental health with respect to the proposed future Site use.

Groundwater samples taken from locations along the eastern boundary of the Project Area were analysed for a broad range of identified potential contaminants. All chemical contaminant concentrations were below the adopted criteria with the exception of Copper, Nickel and Zinc. Although the concentration of these metals were detected above the criteria, the levels detected are considered indicative of disturbed urban ecosystems such as the location of the Site which is known to be impacted by metals contamination.

As the depth of the water bearing zone is below the maximum depth of construction works, there is no expected human contact with the groundwater. Therefore it is the opinion of the

consultant that the elevated concentrations of Copper, Nickel and Zinc are acceptable provided:

- The groundwater is not used as a drinking water source; and
- A follow-up groundwater monitoring round is completed prior to construction works commencing for Metals to confirm the metal concentrations within the groundwater.

All detected chemical contaminant concentrations in the water sample collected from the underground detention tank were below the adopted criteria. As such, the detected chemical contaminant concentrations within the underground detention tank water do not indicate a risk to human and environmental health with respect to the proposed future Site use.

Therefore, based on the findings of this investigation and subject to the limitations in Section 4, it is concluded that the Project Area would be suitable for the proposed development

This Executive Summary should be read in conjunction with all sections of this report.

2. BACKGROUND

Shellshear Young Pty Ltd on behalf of Primary Health Care is proposing a project development of the property located at 19 Queen Street, NARELLAN NSW 2567 (the Site). It is the understanding of Getex Pty Ltd that the Site has a total area of approximately 2.2Ha while the Project Area is approximately 6,550m². The Project Area is a proposed development involving the alterations, additions and fit out for a new medical centre within the existing two storey commercial building. The new facility will generally be contained within the footprint of the existing building. The project includes reconfiguration of the existing external carpark and grounds to provide dedicated parking associated with the medical centre.

In June 2016 a Phase 1 Preliminary Site Contamination Investigation Report (Getex Report 9528.01.PSCA) was prepared by GETEX Pty Ltd (GETEX). Consequently the report recommended that a Phase 2 Contamination Investigation be undertaken within the soil (and groundwater, if encountered) to confirm the extent of contamination (if any).

3. SCOPE

GETEX PTY LTD was engaged by Shellshear Young Pty Ltd on behalf of Primary Health Care to undertake a Phase 2 Site Contamination Assessment of the property located at 19 Queen Street, NARELLAN NSW 2567 (the Site). The objective of the investigation was to determine the type, extent and level of below ground contamination to determine the likelihood for the Project Area within the Site to be suitable for a proposed development. The Project Area is a proposed development which involves the alterations, additions and fit out for a new medical centre within the existing two storey commercial building. The new facility will generally be contained within the footprint of the existing building. The project includes reconfiguration of the existing external carpark and grounds to provide dedicated parking associated with the medical centre.

The assessment was based on information obtained from a soil and groundwater sampling and analysis regime focusing on the issues that were raised in the Phase 1 Preliminary Site Contamination Investigation Report prepared by Getex (Report No 9528.01.PSCA dated 16th of June 2016).

The scope of the investigation comprised of:

- A review of the Phase 1 Preliminary Site Contamination Investigation Report prepared by Getex Pty Ltd;
- Undertaking a subsurface soil sampling and analysis regime on the Site that included:
 - The collection of samples from 16 locations selected to focus on the soil affected by sources of potential contamination.
 - The following analysis regime:
 - i. 41 Samples analysed for Metals (As, Cd, Cr, Cu, Hg, Pb, Ni & Zn);
 - ii. 33 Samples analysed for Total Recoverable Hydrocarbons (TRH);
 - iii. 33 Samples analysed for Benzene, Toluene, Ethyl Benzene and Xylenes (BTEX);
 - iv. 30 Samples analysed for Polycyclic Aromatic Hydrocarbons (PAHs);
 - v. 12 Samples analysed for Phenols;
 - vi. 4 Samples analysed for Organochloride Pesticides / Organophosphate Pesticides (OCPs/OPPs);
 - vii. 8 Samples analysed for Polychlorinated Biphenyls (PCBs);
 - viii. 6 Samples analysed for Volatile Organic Compounds (VOCs) (other than BTEX);
 - ix. 6 Samples analysed for Ammonia; and
 - x. 8 Samples analysed for Asbestos.
- Undertaking a groundwater sampling and analysis regime on the Site that included:
 - The collection of samples from 3 locations selected to focus on migrating groundwater from the former landfill east of the Site.
 - The following analysis regime:
 - i. 3 samples analysed for Total Petroleum Hydrocarbons (TPH);
 - ii. 3 samples analysed for Benzene Toluene Ethyl-Benzene Xylenes (BTEX);
 - iii. 3 sample analysed for Metals;
 - iv. 3 sample analysed for Polycyclic Aromatic Hydrocarbons (PAHs);
 - v. 3 sample analysed for Phenols;
 - vi. 3 sample analysed for Volatile Organic Compounds (VOCs); and
 - vii. 3 sample analysed for EC and pH.
- Undertaking a water sampling and analysis regime on the Underground Detention Tank that included:
 - The collection of a water sample from 1 location selected within the Underground Detention Tank
 - The following water analysis regime:
 - i. 1 sample analysed for Total Petroleum Hydrocarbons (TPH);
 - ii. 1 sample analysed for Benzene Toluene Ethyl-Benzene Xylenes (BTEX);
 - iii. 1 sample analysed for Metals;
 - iv. 1 sample analysed for Polycyclic Aromatic Hydrocarbons (PAHs);
 - v. 1 sample analysed for Phenols;
 - vi. 1 sample analysed for Volatile Organic Compounds (VOCs); and

- vii. 1 sample analysed for EC and pH.
- Prepare a report for the purpose of determining the likelihood for the Project Area to be suitable for the proposed development based on the results of the investigation.
- The results from the soil sampling and analysis will also be used to provide a soil classification for offsite disposal of soil.

4. LIMITATIONS

The investigation conducted was limited in scope. The area considered in the investigation was limited to assessing the suitability of the Project Area within 19 Queen Street, NARELLAN NSW 2567 (the Site) as illustrated in Figure 2 within Section 5 of this report.

The investigation involved the inspection/sampling of a selected number of locations/materials at the time of inspection which may or may not be representative of conditions between the locations/materials assessed. Furthermore conditions on site may also change over time subsequent to the GETEX PTY LTD assessment.

The investigation is limited to a soil assessment depth of 8.0m and groundwater well depth of 10.0m.

As such, although all work is performed to a professional and diligent standard, the potential variance between the practical limitations of the scope of work undertaken, the cost of our services, all possible issues of concern, and any loss or damages which may be associated with our work are such that we cannot warrant that all issues of concern/contamination or potential contamination have been identified. We therefore limit any potential liability associated with our work to the cost of our services.

All work conducted and/or reports/information produced by GETEX PTY LTD are prepared for a specific objective and within a specified scope of work as agreed between the Client and GETEX PTY LTD. As such this document is only for the use of the Client for the intended objective and may not be suitable for any other purpose. No parties other than the client may use this document without first conferring with GETEX PTY LTD. Before passing this document onto a third party, the third party must be informed by the client of any relevant information relating to this document. It is the responsibility of any party using this report to fully check to their satisfaction if this report is suitable for their intended use.

All information and/or report(s) prepared by GETEX PTY LTD should not be reproduced and/or presented/reviewed except in full.

5. SITE IDENTIFICATION

The investigation area of this assessment is the Project Area within 19 Queen Street, NARELLAN NSW 2567 (the Site), which is located within the Parish of Narellan, County of Cumberland. The local government authority is Camden Council. Camden Council zoned the Site as B2 Local Centre and B5 Business Development within the Camden Local Environment Plan (2010).

The Project Area is depicted in Figure 2 bordered by the red shaded line.

Site Address:	19 Queen Street, NARELLAN NSW 2567	
Lot & Deposited Plan:	Lot 2 DP 1085432	
Local Government Authority:	Camden Council	
Geographical Location (MGA56):	Easting: 291134 Northing: 6230601 (approximately)	
Site Area:	Approximately 2.2Ha	
Project Area:	Approximately 6,550m ²	
Current Land Use:	Former two storey council building with associated carpark	
Proposed Land Use:	Two storey Medical Centre with associated carpark	

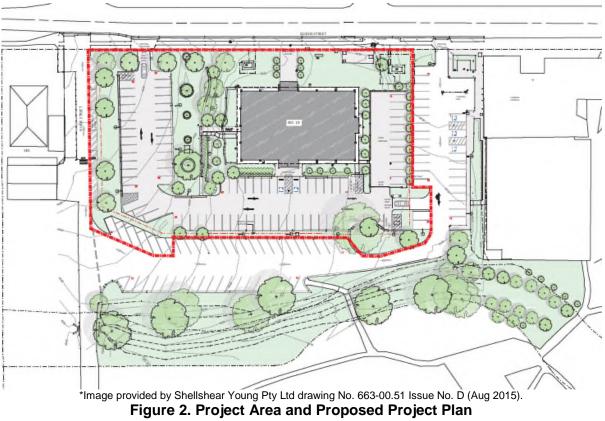

The site identification details are summarised in the following table.

Table 5-1: Site Identification Details

Refer to Figure 1 for the general location of the Site.

*Aerial image derived under license from Google and is indicative of on-ground locations only. Figure 1. Site Locality Map

A limited surface walkover inspection of the Site and surrounding area was conducted on the 9th of August 2016. The Site is also identified as Lot 2 DP 1085432. The Site is made up of two multi-storey buildings and one single storey building and a carpark.

The Site is surrounded by a public park, residential houses and a shopping centre.

6.1 Lot 2 DP 1085432

The site walkover confirmed the description of the Site as reported within the Phase 1 Preliminary Site Contamination Investigation Report.

Lot 2 DP 1085432 is currently occupied by two multi-storey buildings and one single storey building. The buildings are occupied/used by Camden Council and the State Emergency Services (SES). The building that occupies the north-west section of the Site is Narellan Library. This building is a modern-looking building built around 2004. The second building was used as a Council building and is located in a central position along the western boundary. The third building was a single storey building used by the SES. All buildings were built from predominantly brick, metal and concrete.

Between the first and second buildings and continuing around the east and south sides of the second building is an asphalt covered carpark. Throughout the carpark are stormwater drains. Directly adjacent east of the carpark, located in a central position, was a pit for an unknown use.

The remaining exposed areas on the Site were covered by either landscape gardens or grass.

Located along the western boundary of the Site, north-west of the second building, was a large underground storage tank (UST). The use of the storage tank is unknown. The vegetation on top of the tank location appeared to be dead.

Two substations were identified along the western boundary of the Site. One substation was located north-west of the second building. The other substation was identified south-west of the second building.

Bordering the east side of the Site was a dry creek bed. Within the creek bed were several discharge points coming from beneath the carpark. Also within the creek was a sewer manhole.

No olfactory indications of contamination were present during the site walkover.

6.2 Surrounding Area

The lands immediately surrounding the Site are a public park, residential houses and a shopping centre.

North of the Site is Elyard Street. On the opposite side of the road is a shopping centre.

The property east of the Site is a public park followed by a former landfill currently used for vehicle parking. Monitoring wells and several soil mounds were observed along the west boundary of this property.

South of the Site are residential properties.

The western boundary of the Site is bound by Queen Street. Opposite the Site are residential properties.

6.3 Proposed Development

The proposed development involves the alterations, additions and fit out for a new medical centre within an existing two storey commercial building. The new facility will generally be contained within the footprint of the existing building. The project includes reconfiguration of the existing external carpark and grounds to provide dedicated parking associated with the medical centre.

7. TOPOGRAPHY, GEOLOGY, HYDROLOGY AND HYDROGEOLOGY

7.1 Topography

As reported in the Phase 1 Preliminary Site Contamination Investigation Report, the Site appears to grade gently down towards the east-northeast to the dry creek bed, however the western boundary grades down towards the west to Queen Street. The properties east of the creek bed, including the former landfill, grade gently down towards the dry creek bed. The overall surrounding area gently grades towards the north.

7.2 Geology

The Soil Landscapes of the Sydney 1:100,000 Sheet maps show the site to be within an area of the Residual Blacktown Soil Landscape.

The Residual Blacktown Soil Landscape is characterised by gently undulating rises on Wianamatta Group shales and Hawkesbury shale. Local relief is up to 30m with slopes usually <5%. The landscape contains broad rounded crests and ridges with gently inclined slopes. Native vegetation is cleared eucalypt woodland and tall open-forest (wet sclerophyll forests). Soils are shallow to moderately deep (<100cm) with red and brown podzolic soil on crests, upper slopes and well-drained areas, yellow podzolic soils and soloths on lower slopes and in areas of poor drainage. Landscape limitations include moderately reactive highly plastic subsoil, low soil fertility and poor soil drainage.

The geology in the area is associated with the following Wianamatta Group Units; Ashfield Shale consisting of laminite and dark grey siltstone; Bringelly Shale which consists of shale with occasional calcareous claystone, laminite and infrequent coal; and Minchinbury Sandstone consisting of fine to medium-grained quartz lithic sandstone.

(Chapman, G.A. and Murphy, C.L., 1989)

From field observations the geological profile was as following:

<u>Fill</u>

Beneath the bitumen and road base the following was encountered:

- Mottled brown and dark grey clay to a depth of 0.4m (BH1);
- Light brown clay to a depth of 0.3m (BH2);
- Light yellowish brown silty clay with rock fragments to a depth ranging between 0.3-0.8m (BH3);
- Light yellowish brown silty sand to a depth of 1.2m (BH5).

Within the grass covered areas the surface soil was dark brown loam topsoil to a depth ranging between 0.1-0.2m.

At locations BH6 and BH14 beneath the topsoil was brownish yellow sand with rock fragments and gravel to a depth ranging between 0.8-1.2m.

Natural Soils

• Strong brown silty clay was encountered across the Site to between 0.4m and 1.1m.

Bedrock

• Shale was encountered in all locations ranging between 0.4m and 1.1m.

Groundwater

• Water bearing zone was encountered at depths ranging from 7.5m (GW1), 8m (GW2) and 9.5m (GW1).

7.3 Hydrology

According to the Phase 1 Preliminary Site Contamination Investigation Report there was a dry creek bed identified along the east boundary of the Site. The creek bed appears to be the natural drainage line for the area.

Within the Site, surface runoff is expected to run towards the east-northeast into drainage located on the eastern edge of the carpark or, where no hardstand is present, into the creek. Along the western boundary of the Site surface runoff is expected to run towards stormwater drains along Queen Street.

The above characteristics were confirmed while onsite during this investigation.

7.4 Hydrogeology

According to the Phase 1 Preliminary Site Contamination Investigation Report there were were four (4) registered bores located within a 500m radius of the Site. However no information regarding water levels was provided. The nearest borehole location providing water information is located approximately 850m north-east. A summary of these bores is presented in Table 7.1.

Bore ID	Use	Approximate Distance from Site	Bore Depth	Water Bearing Zones
GW075057	Monitoring	850m north-east	11m	5-6m
Gw075057	Bore	osoni nonir-easi	1 1 1 1 1	9-11m
GW113315	Monitoring Bore	50 east	N/A	N/A
GW113316	Monitoring Bore	190 east	N/A	N/A
GW113317	Monitoring Bore	170 east	N/A	N/A
GW113318	Monitoring Bore	70 east	N/A	N/A

Table 7-1: Summary of Groundwater Bores

From field observations the water bearing zone was encountered at depths ranging from 7.5m (GW1), 8m (GW2) and 9.5m (GW1).

8. SITE HISTORY

A detailed site history review of the Site was undertaken by Getex and prepared within the Phase 1 Preliminary Contamination Investigation Report (Report No. 9528.01.PSCA). The known history of the Site is summarised within Table 8.1.

Years	Land Use	Source
1899 – ~1947	Site is farmland	Land Titles, Aerial Photography
~1947 – 1969	Building onsite in south-west corner. Site still for farmland.	Land Titles, Aerial Photography, Council Records
Between 1947-1961 – between 1972-1990	A quarry/extractive activity appears to be the use of the property west of the Site.	Aerial Photography
1969 – ~1975	Site used for a coal analytical laboratory	Land Titles, Aerial Photography, Council Records
1973	Building application for what appears to be the current existing building. Used as an administration and office building	Land Titles, Council Records
Between 1972-1990 – pre 2016	The property west of the Site appears to be used as a landfill.	Aerial Photography, Site Walkover
1997 - ~2000	Site used for a chemical testing laboratory	Council Records
~2000 - Present	Site used for Council office	Land Titles, Site Walkover

Table 8-1: Site History Summary

8.1 SafeWork NSW Records

SafeWork NSW undertook a search for information on licenses to keep dangerous goods for the site. The search of the Stored Chemical Information Database and the microfiche records did not locate any records pertaining to the Site (refer to Appendix VI).

8.2 Contamination Records Pertaining to Landfill Property East of the Site

The Landfill Property is approximately 100m east from the Project Area.

A number of investigations have been completed previously within the Landfill Property East of the Site (3 Elyard Street NARELLAN NSW). These investigations include:

- SMEC, 2003. 1 Elyard Street, Narellan Preliminary Environmental Investigation Final Report. Reference 31342.033;
- Environmental and Earth Sciences (EES), 2004. Detailed Site Assessment of 1 Elyard Street, Narellan, New South Wales. Report No. 104080;
- EES, 2006. Remediation Action Plan for Elyard Garden Residential Development, 1 Elyard Street, Narellan, NSW. Report No 105082_RAP;
- Emerson Associates, July 2011, Elyard Street Joint Venture, No 1 Elyard Street, Narellan, NSW, Groundwater Report. Reference 1111/JE/110706/C;
- DLA Environmental, July 2011. Remediation Action Plan, 1 Elyard Street, Narellan, NSW. Reference DL2664;
- Environmental Investigations, EI (31st January 2012) Former Landfill 1 Elyard Street, Narellan, NSW, Gas And Groundwater Monitoring Investigation. Report No E1445.1 GW; and
- Environmental Investigations, EI (19th November 2015) Remediation Action Plan, 3 Elyard Street, Narellan, NSW. Report No E1445 AT RAP Rev1.

At the time of the above assessments, the Landfill Property comprises two distinct halves.

The northern half was predominantly level and covered in concrete that was a combination of yard areas and building slabs associated with the former use as a Steel Yard and Hardware Store. The former buildings have now been demolished. Discrete and localised stockpiles of demolition rubble (bricks, concrete, asphalt, steel and wood etc.) were present in this half of the property.

The southern half of the Landfill Property is unsurfaced and is occupied by locally vegetated stockpiles of soil materials, which are up to approximately 10m high in places and comprise imported natural excavated materials that may be used to construct a clay cap across the former landfilled portion of the property.

The above assessments identified that the groundwater within the property is contaminated with heavy metals and ammonia. The assessments also identified that the expected groundwater flow was in a north-west direction. Therefore, there is the potential for the contaminated groundwater to migrate into the Project Area.

9. POTENTIAL CONTAMINATION ISSUES

Table 9.1 provides a summary of the potential contamination issues that had been identified which require further investigation involving the collection and chemical analysis of belowground samples in order to determine if the site would be considered suitable, from a contamination perspective, for the proposed development.

Phase 2 Site Contamination Assessment 19 Queen Street, NARELLAN NSW 2567

Page 20

Source	Contaminants	Location	Affected Media	Migration Potential	Current Receptors	Current Exposure Pathway	Future Potential Receptors	Future Potential Exposure Pathway
Historical ownership by a car wrecker, transport company, coal analytical laboratory, chemical testing laboratory and farmer/grazier	TRH, BTEX, Metals, PAHs, Phenols, OCP/OPP	Entire Site	Surface soil; Underlying natural soils and bedrock; Groundwater (dependant on depth and ground profile/pathway to contamination source).	Surface water and dust - low potential; Vertical/horizontal migration; Utility Corridor; Groundwater (dependant on depth and ground profile/pathway to contamination source).	Site Occupants; Neighbouring properties; Flora and Fauna; Creek.	Skin contact with potentially contaminated soil; Inhalation of dust particles; Vapour Inhalation; Ingestion of potentially contaminated soil.	Site Occupants; Neighbouring properties; Construction workers; Flora and Fauna; Creek.	Skin contact with potentially contaminated soil; Inhalation of dust particles; Vapour Inhalation; Ingestion of potentially contaminated soil.
Presence of underground detention tank	TRH/BTEX, PAHs, Metals, Phenols, VOCCs	 North-west of second (central) building 	Surface soil; Underlying natural soils and bedrock; Groundwater (dependant on depth and ground profile/pathway to contamination source).	Surface water and dust - low potential; Vertical/horizontal migration; Utility Corridor; Groundwater.	Site Occupants; Neighbouring properties; Flora and Fauna; Creek.	Inhalation of dust particles; Vapour Inhalation.	Site Occupants; Neighbouring properties; Construction workers; Flora and Fauna; Creek.	Skin contact with potentially contaminated soil; Inhalation of dust particles; Vapour Inhalation; Ingestion of potentially contaminated soil and groundwater.
Presence of Substations on the Site	PCBs, Metals, Asbestos	Two locations: North-west of second (central) building; and South-west of second (central) building 	Surface soil; Underlying natural soils and bedrock; Groundwater (dependant on depth and ground profile/pathway to contamination source).	Surface water and dust - low potential; Vertical/horizontal migration; Utility Corridor; Groundwater.	Site Occupants; Neighbouring properties; Flora and Fauna; Creek.	Inhalation of dust particles; Vapour Inhalation.	Site Occupants; Neighbouring properties; Construction workers; Flora and Fauna; Creek.	Skin contact with potentially contaminated soil; Inhalation of dust particles; Ingestion of potentially contaminated soil.

Source	Contaminants	Location	Affected Media	Migration Potential	Current Receptors	Current Exposure Pathway	Future Potential Receptors	Future Potential Exposure Pathway
Potential contamination from former landfill.	TRH, BTEX, PAHs, Metals, Methane, Ammonia, Organic Acids, Alkanes, Sulphides, Nutrients, TDS, TSS	1-3 Elyard Street (adjacent northeast-east of the Site)	Surface soil; Underlying natural soils and bedrock; Surface water; Groundwater (dependant on depth and ground profile/pathway to contamination source).	Surface water and dust - low potential; Vertical/horizontal migration; Groundwater (dependant on depth and ground profile/pathway to contamination source).	Site Occupants; Flora and Fauna; Creek.	Skin contact with potentially contaminated soil and water; Ingestion of potentially contaminated soil and water; Landfill gas inhalation.	Site Occupants; Construction workers; Flora and Fauna; Creek.	Skin contact with potentially contaminated soil and water; Ingestion of potentially contaminated soil and water; Landfill gas inhalation.

Table 9-1: Conceptual Site Model Summary

10. SAMPLING AND ANALYSIS PLAN

10.1 Data Quality Objectives

The methodology employed to design an appropriate sampling and analysis plan for this investigation involves firstly defining the Data Quality Objectives (DQOs) for the sampling (Sections 10.1.1 to 10.1.6), then selecting a sampling strategy (Section 10.1.7) and corresponding sampling points (Section 10.2) to best achieve the DQOs. This methodology is described in sequence in the following sections.

10.1.1 State the Problem

The Phase 1 Preliminary Contamination Investigation Report has identified the potential for Site contamination conditions to occur at the Site which may impact upon the suitability of the Project Area for the proposed development of alterations, additions and fit out for a new medical centre within an existing two storey commercial building, including reconfiguration of the existing external carpark and grounds to provide dedicated parking associated with the medical centre (**Section 9**).

The former landfill east of the Site contains contaminated groundwater. Due to expected groundwater flow directions, there is the potential for the contaminated groundwater to migrate into the Project Area.

Assessment of contamination conditions is necessary to assess the presence of below ground contamination of the Project Area and draw conclusions regarding if there is contamination that will affect the suitability, or otherwise, for the Project Area to be used as a Medical Centre.

Information on Site contamination conditions presented in earlier sections of this report resulted in the conceptual site contamination model presented in **Section 9** of this report.

10.1.2 Identify the Decision

Based on the decision making process for assessing urban redevelopment sites detailed in *Guidelines for the NSW Site Auditor Scheme (2nd edition),* Department of Environment and Conservation (April 2006), and the recommendations within the Phase 1 Preliminary Contamination Investigation Report, the following decisions were required to be made as part of the Site assessment:

- Is there any contamination within the Project Area soil that will pose a risk to future onsite and offsite receptors?
- Is there any contamination within the Project Area groundwater that will pose a risk to future onsite and offsite receptors?
- Is there any contamination within the underground detention tank that will pose a risk to future onsite and offsite receptors?

10.1.3 Identify Inputs into the Decision

Inputs identified to provide sufficient data to make the decisions nominated above include:

- The Site description and history as provided in **Section 6, 7 and 8** respectively;
- Potential contamination issues as described in **Section 9**;
- Visual and olfactory indications;
- PID and Landfill Gas screening data in Appendix II;
- Soil environmental data as collected by soil sampling and analysis in Appendix III;
- Groundwater environmental data as collected by groundwater sampling and analysis in **Appendix III**;
- Soil and water criteria to be achieved on the Site as based on a proposed future land-use as defined by assessment criteria prepared in **Section 11**; and
- Confirmation that data generated by sample analysis are of a sufficient quality to allow reliable comparison to assessment criteria as undertaken by assessment of quality assurance / quality control as per the data quality indicators established in Sections 10.1.6 & 12 and Appendix V.

10.1.4 Define the Study Boundaries

The study area is defined as the Project Area within 19 Queen Street, NARELLAN NSW 2567 as shown in **Figure 2**. The area is approximately 6,550m².

The vertical extent of the soil investigation was to a maximum depth of 8.0m below the existing ground level.

Groundwater monitoring wells were installed to a depth of 10.0m below the existing ground level.

Due to the nature of potential contaminants identified and project deadline requirements, seasonality and other temporal variables were not assessed as part of this investigation.

The temporal boundaries of this investigation are limited to the period of field investigation during August 2016 and September 2016 and reported during October 2016.

10.1.5 Develop a Decision Rule

Soil analytical data was assessed against NSW Environmental Protection Authority (EPA) endorsed criteria including:

• National Environment Protection (Assessment of Site Contamination) Measure, National Environment Protection Council, 1999, as amended 2013.

The decision rules adopted to answer the decisions identified in **Section 10.1.2** are summarised in the following table.

Decision Required to be Made Decision Rule 1. Is there any contamination within the Site soil that will pose a risk to future onsite and offsite receptors? Soil analytical data will be compared against EPA e criteria. Statistical analyses of the data in accordance with guidance documents will be undertaken, if appropriate, to the decisions. Statistical analyses of the data in accordance with guidance documents will be undertaken, if appropriate, to the decisions. The following statistical criteria will be adopted with resoils: Either: the reported concentrations are all below the site criterion? no single analyte concentration for each analyte must be the adopted site criterion; no single analyte concentration or 250% of the adopted site criterion; and the standard device the mercilie and the standard device the set t	
soils: Either: the reported concentrations are all below the site cri Or: the average site concentration for each analyte must b the adopted site criterion; no single analyte concentration 250% of the adopted site criterion; and the standard dev	
the results must be less than 50% of the site criteria. And: the 95% upper confidence limit (UCL) of the concentration for each analyte must be below the adop criterion as per the NSW EPA Contaminated Sites - S Design Guidelines, 1995.	teria; be below exceeds iation of average oted site
If the statistical criteria stated above are satisfied, the denoised No. If the statistical criteria are not satisfied, the decision is Yes	
2. Is there any contamination within the Site groundwater that will pose a risk to future onsite and offsite receptors? Soil analytical data will be compared against EPA e criteria. Statistical analyses of the data in accordance with guidance documents will be undertaken, if appropriate, to the decisions.	relevant
The following statistical criteria will be adopted with respect groundwater: The average site concentration for each analyte must be be adopted site criterion; no single analyte concentration excen adopted site criterion.	elow the
If the statistical criteria stated above are satisfied, the decis No. If the statistical criteria are not satisfied, the decision is Yes	
3. Is there any contamination within the underground detention tank that will pose a risk to future onsite and offsite receptors? Water analytical data will be compared against ANZECC e criteria. Statistical analyses of the data in accordance with guidance documents will be undertaken, if appropriate, to the decisions.	ndorsed relevant
The following statistical criteria will be adopted with re- water: the reported concentrations are all below the criteria.	
If the statistical criteria stated above are satisfied, the de No. If the statistical criteria are not satisfied, the decision is Yes	

Table 10-1: Decision Rules

10.1.6 Specify Limits on Decision Errors

The DQOs for the assessment of the laboratory analytical data include the following conditions:

- Maximum sample holding times for organics were 14 days. Metals and metalliods holding times were 6 months. Mercury (Hg) holding time was 28 days;
- Sample preservation and handling were conducted in accordance with industry accepted standards;
- All sample analyses were conducted by NATA accredited laboratories;
- Laboratory blank analysis to be below PQLs; and
- The relative percentage difference (RPD) of duplicates/replicates and percent recoveries of control spikes to be calculated and compared to the following criteria:
 - o Less than 30% for field replicates;
 - Less than 40% for internal duplicate samples and less than 44% on duplicates with 10 times the limit of reporting; and
 - o 75-125% recovery for internal recovery samples.

Results Accuracy			
Adequate Sampling Density	Sampling locations were selected in accordance with procedures outlined within NSW EPA Contaminated Sites: Sampling Design Guidelines, 1995.		
Acceptable field and laboratory Relative Percentage Difference (RPD) for duplicate comparison	<30% inorganics and <50% for organics and low concentration analytes for field replicates <40% for internal duplicate samples and <44% on duplicates with 10 times the limit of reporting.		
Trip Spikes	Recoverable concentrations of analytes between 75 – 125%.		
Adequate laboratory performance	Based on acceptance criteria of laboratory as specified on certificate of analysis: includes: blank samples, matrix spikes, control samples, and surrogate spike samples.		
Results Suitability			
Sample type and analyte selection	Sample types and analytes selected to reflect all potential sources.		
Trip Spikes	Recoverable concentrations of analytes between 75 – 125%.		
Duplicate Samples	One duplicate and split replicate per 20 samples.		
Laboratory selection	Laboratory internal quality control and quality assurance methods comply with appropriate standards.		
Documentation			
Chain of Custody records	Laboratory sample receipt information received confirming receipt of samples intact and appropriate chain of custody.		
	NATA registered laboratory results certificates provided.		
Comparability			
	Use of NATA registered laboratories.		
	Test methods consistent for each sample in accordance with the Sampling and Analysis Plan.		

Detailed records of all field work including borehole logs, sample data and groundwater monitoring data.
Ensure test methods used between primary and secondary lab are equivalent.
Acceptable RPD's for all replicates and laboratory
duplicates.

 Table 10-2: Sampling and Analysis DQO Summary

10.1.7 Optimise the Design for Obtaining Data

Various strategies for developing a statistically based sampling plan are identified in NSW EPA Contaminated Sites - Sampling Design Guidelines, 1995, including judgemental, random, systematic and stratified sampling patterns.

Since the Phase 1 Preliminary Contamination Investigation Report stated that the potential contaminants are potentially throughout the Site, systematic sampling by an orthogonal grid across the Site was considered to be the most appropriate for the current investigation.

Additional sample locations were also conducted surrounding point sources of potential contamination (e.g. substations and UST).

Soil samples were collected using a drill rig with solid flight auger technique at selected locations across the Project Area at multiple depths within fill and natural material (up to a maximum depth of 8 metres) to allow for evaluation of the strata as recommended in the Phase 1 Preliminary Contamination Investigation Report.

The former landfill east of the Site contains contaminated groundwater. Due to expected groundwater flow directions, there is the potential for the contaminated groundwater to migrate into the Project Area.

Groundwater wells were installed along the eastern boundary of the Project Area to intersect potentially contaminated groundwater from the former landfill east of the Site.

A water sample was collected from the water detention tank.

Based upon the objectives of this investigation and the recommendations from the Phase 1 Preliminary Contamination Investigation Report, the density of the investigation to be undertaken as part of this investigation is considered appropriate.

10.2 Soil Sampling Program

Justin Thompson-Laing of Getex Pty Ltd attended the site on the 9th and 10th of August 2016.

The soil profile at the Site consisted of a dark brown loam topsoil where no hardstand cover was present. At locations BH6 and BH14 beneath the topsoil was brownish yellow sand with rock fragments and gravel to a depth ranging between 0.8-1.2m. Beneath the bitumen and roadbase fill material was encountered to between 0.3m and 1.2m. Strong brown silty clay was then encountered across the Site to between 0.4m and 1.1m followed by shale that generally increased in strength as depth increased.

Saturated soil was encountered at depths ranging from 6.4m (BH3) and 7.3m (BH5).

No olfactory indications of contamination were noted during the site visits. In addition, no visible signs of contamination such as asbestos, unnatural discoloration or major hydrocarbon related stains were present on the ground surface.

A Photo-Ionisation Detector (PID) was used to screen soils via head space analysis for VOCs at 1m intervals at each sampling location. A Landfill Gas Analyser was used to screen soils via head space analysis for CH_4 and H_2S at 1m intervals at sampling locations along the eastern boundary. Small samples of soil were collected and placed within zip-loc plastic bags, each bag was then sealed. Samples were then disturbed to release any gas held within the void space between grains. The PID and Landfill Gas Analyser intake were then inserted into the bag via a small gap and the VOC, CH_4 and H_2S levels were recorded. Results are noted within the Borehole Logs in Appendix II.

The following table presents a summary of the locations for the eighty-eight (88) samples collected and analysed within the Site. Please refer to **Appendix I** for the Site Map and **Appendix II** for Borehole Logs.

Sample Number	Sample Type	Location Collected	Analysis Performed
9528/BH1/0.2- 0.3	Primary Sample	Sample taken at a depth of 0.2-0.3m at a location 8.5m north of the southern carpark's southern boundary and 2m east of the eastern inner carpark's western boundary. (BH1)	TRH/BTEX, PAHs, Metals, Phenols
9528/BH1/1.0	Primary Sample	Sample taken at a depth of 1m at a location 8.5m north of the southern carpark's southern boundary and 2m east of the eastern inner carpark's western boundary. (BH1)	PAHs, Metals
9528/BH1/2.0	Primary Sample	Sample taken at a depth of 2m at a location 8.5m north of the southern carpark's southern boundary and 2m east of the eastern inner carpark's western boundary. (BH1)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH1/3.0	Primary Sample	Sample taken at a depth of 3m at a location 8.5m north of the southern carpark's southern boundary and 2m east of the eastern inner carpark's western boundary. (BH1)	TRH/BTEX, PAHs, Phenols, VOCs
9528/BH1/4.0	Primary Sample	Sample taken at a depth of 4m at a location 8.5m north of the southern carpark's southern boundary and 2m east of the eastern inner carpark's western boundary. (BH1)	TRH/BTEX, Metals
9528/BH2/0.2- 0.3	Primary Sample	Sample taken at a depth of 0.2-0.3m at a location 39m south of eastern inner carpark's exit and 5m west of eastern inner carpark's eastern boundary. (BH2)	TRH/BTEX, PAHs, VOCs

Sample Number	Sample Type	Location Collected	Analysis Performed
9528/BH2/1.0	Primary Sample	Sample taken at a depth of 1m at a location 39m south of eastern inner carpark's exit and 5m west of eastern inner carpark's eastern boundary. (BH2)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH2/2.0	Primary Sample	Sample taken at a depth of 2m at a location 39m south of eastern inner carpark's exit and 5m west of eastern inner carpark's eastern boundary. (BH2)	PAHs, Metals
9528/BH2/3.0	Primary Sample	Sample taken at a depth of 3m at a location 39m south of eastern inner carpark's exit and 5m west of eastern inner carpark's eastern boundary. (BH2)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH2/4.0	Primary Sample	Sample taken at a depth of 4m at a location 39m south of eastern inner carpark's exit and 5m west of eastern inner carpark's eastern boundary. (BH2)	TRH/BTEX, Metals
9528/BH3/0.2- 0.3	Primary Sample	Sample taken at a depth of 0.2-0.3m at a location 15m south of eastern inner carpark's exit and 5.5m west of eastern inner carpark's eastern boundary. (BH3)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH3/1.0	Primary Sample	Sample taken at a depth of 1m at a location 15m south of eastern inner carpark's exit and 5.5m west of eastern inner carpark's eastern boundary. (BH3)	TRH/BTEX
9528/BH3/2.0	Primary Sample	Sample taken at a depth of 2m at a location 15m south of eastern inner carpark's exit and 5.5m west of eastern inner carpark's eastern boundary. (BH3)	TRH/BTEX, PAHs, Metals
9528/BH3/3.0	Primary Sample	Sample taken at a depth of 3m at a location 15m south of eastern inner carpark's exit and 5.5m west of eastern inner carpark's eastern boundary. (BH3)	TRH/BTEX, PAHs, Metals, Phenols
9528/BH3/4.0	Primary Sample	Sample taken at a depth of 4m at a location 15m south of eastern inner carpark's exit and 5.5m west of eastern inner carpark's eastern boundary. (BH3)	PAHs, Metals
9528/BH4/0.2- 0.3	Primary Sample	Sample taken at a depth of 0.2-0.3m at a location 2.5m south and 2m east of the entry ramp to the building. (BH4)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH4/1.0	Primary Sample	Sample taken at a depth of 1m at a location 2.5m south and 2m east of the entry ramp to the building. (BH4)	TRH/BTEX, PAHs, Phenols, VOCs

Sample Number	Sample Type	Location Collected	Analysis Performed
9528/BH4/2.0	Primary Sample	Sample taken at a depth of 2m at a location 2.5m south and 2m east of the entry ramp to the building. (BH4)	TRH/BTEX, Metals
9528/BH4/3.0	Primary Sample	Sample taken at a depth of 3m at a location 2.5m south and 2m east of the entry ramp to the building. (BH4)	TRH/BTEX, PAHs, VOCs
9528/BH4/4.0	Primary Sample	Sample taken at a depth of 4m at a location 2.5m south and 2m east of the entry ramp to the building. (BH4)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH5/0.2- 0.3	Primary Sample	Sample taken at a depth of 0.2-0.3m at a location 4m north of eastern inner carpark's southern boundary and 2m east of eastern inner carpark's western boundary. (BH5)	PAHs, Metals
9528/BH5/1.0	Primary Sample	Sample taken at a depth of 1m at a location 4m north of eastern inner carpark's southern boundary and 2m east of eastern inner carpark's western boundary. (BH5)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH5/2.0	Primary Sample	Sample taken at a depth of 2m at a location 4m north of eastern inner carpark's southern boundary and 2m east of eastern inner carpark's western boundary. (BH5)	TRH/BTEX, Metals
9528/BH5/3.0	Primary Sample	Sample taken at a depth of 3m at a location 4m north of eastern inner carpark's southern boundary and 2m east of eastern inner carpark's western boundary. (BH5)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH5/4.0	Primary Sample	Sample taken at a depth of 4m at a location 4m north of eastern inner carpark's southern boundary and 2m east of eastern inner carpark's western boundary. (BH5)	TRH/BTEX
9528/BH5/7.4	Primary Sample	Sample taken at a depth of 7.4m at a location 4m north of eastern inner carpark's southern boundary and 2m east of eastern inner carpark's western boundary. (BH5)	TRH/BTEX, PAHs, Metals
9528/BH6/0.2- 0.3	Primary Sample	Sample taken at a depth of 0.2-0.3m at a location 3m north and 1m west of north-east corner of the building. (BH6)	TRH/BTEX, PAHs, Metals, Phenols
9528/BH6/1.0	Primary Sample	Sample taken at a depth of 1m at a location 3m north and 1m west of north- east corner of the building. (BH6)	PAHs, Metals
9528/BH6/2.0	Primary Sample	Sample taken at a depth of 1m at a location 3m north and 1m west of north- east corner of the building. (BH6)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH6/3.0	Primary Sample	Sample taken at a depth of 1m at a location 3m north and 1m west of north- east corner of the building. (BH6)	TRH/BTEX, PAHs, Phenols, VOCs

Sample Number	Sample Type	Location Collected	Analysis Performed
9528/BH6/4.0	Primary Sample	Sample taken at a depth of 4m at a location 3m north and 1m west of north- east corner of the building. (BH6)	TRH/BTEX, Metals
9528/BH7/0.2- 0.3	Primary Sample	Sample taken at a depth of 0.2-0.3m at a location 6.5m east of footpath and 1m south of southern carpark. (BH7)	TRH/BTEX, PAHs, VOCs
9528/BH7/1.0	Primary Sample	Sample taken at a depth of 1m at a location 6.5m east of footpath and 1m south of southern carpark. (BH7)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH7/2.0	Primary Sample	Sample taken at a depth of 2m at a location 6.5m east of footpath and 1m south of southern carpark. (BH7)	PAHs, Metals
9528/BH7/3.0	Primary Sample	Sample taken at a depth of 3m at a location 6.5m east of footpath and 1m south of southern carpark. (BH7)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH7/4.0	Primary Sample	Sample taken at a depth of 4m at a location 6.5m east of footpath and 1m south of southern carpark. (BH7)	TRH/BTEX, Metals
9528/BH8/0.2- 0.3	Primary Sample	Sample taken at a depth of 0.2-0.3m at a location 24m east of footpath and 2m south of northern carpark's southern boundary. (BH8)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH8/1.0	Primary Sample	Sample taken at a depth of 1m at a location 24m east of footpath and 2m south of northern carpark's southern boundary. (BH8)	TRH/BTEX
9528/BH8/2.0	Primary Sample	Sample taken at a depth of 2m at a location 24m east of footpath and 2m south of northern carpark's southern boundary. (BH8)	TRH/BTEX, PAHs, Metals
9528/BH8/3.0	Primary Sample	Sample taken at a depth of 3m at a location 24m east of footpath and 2m south of northern carpark's southern boundary. (BH8)	TRH/BTEX, PAHs, Metals, Phenols
9528/BH8/4.0	Primary Sample	Sample taken at a depth of 4m at a location 24m east of footpath and 2m south of northern carpark's southern boundary. (BH8)	PAHs, Metals
9528/BH9/0.2- 0.3	Primary Sample	Sample taken at a depth of 0.2-0.3m at a location 4.5m east from footpath and 4.5m south of the building. (BH9)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH9/1.0	Primary Sample	Sample taken at a depth of 1m at a location 4.5m east from footpath and 4.5m south of the building. (BH9)	TRH/BTEX, PAHs, Phenols, VOCs
9528/BH9/2.0	Primary Sample	Sample taken at a depth of 2m at a location 4.5m east from footpath and 4.5m south of the building. (BH9)	TRH/BTEX, Metals
9528/BH9/3.0	Primary Sample	Sample taken at a depth of 3m at a location 4.5m east from footpath and 4.5m south of the building. (BH9)	TRH/BTEX, PAHs, VOCs

Sample Number	Sample Type	Location Collected	Analysis Performed
9528/BH9/4.0	Primary Sample	Sample taken at a depth of 4m at a location 4.5m east from footpath and 4.5m south of the building. (BH9)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH9a/0. 1	Primary Sample	Sample taken at a depth of 0.1m at a location adj south of the southern substation. (BH9a)	PAHs, Metals
9528/BH10/0. 2-0.3	Primary Sample	Sample taken at a depth of 0.2-0.3m at a location 6.5m east of footpath and 4.5m north of the southern substation. (BH10)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH10/1. 0	Primary Sample	Sample taken at a depth of 1m at a location 6.5m east of footpath and 4.5m north of the southern substation. (BH10)	TRH/BTEX, Metals
9528/BH10/2. 0	Primary Sample	Sample taken at a depth of 2m at a location 6.5m east of footpath and 4.5m north of the southern substation. (BH10)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH10/3. 0	Primary Sample	Sample taken at a depth of 3m at a location 6.5m east of footpath and 4.5m north of the southern substation. (BH10)	TRH/BTEX
9528/BH10/4. 0	Primary Sample	Sample taken at a depth of 4m at a location 6.5m east of footpath and 4.5m north of the southern substation. (BH10)	TRH/BTEX, PAHs, Metals
9528/BH10a/0 .1	Primary Sample	Sample taken at a depth of 0.1m at a location adj north of southern substation. (BH10a)	PAHs, Metals
9528/BH11/0. 2-0.3	Primary Sample	Sample taken at a depth of 0.2-0.3m at a location 2m south of northern carpark's southern boundary and 10m east of footpath. (BH11)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH11/1. 0	Primary Sample	Sample taken at a depth of 1m at a location 2m south of northern carpark's southern boundary and 10m east of footpath. (BH11)	TRH/BTEX, PAHs, Phenols, VOCs
9528/BH11/2. 0	Primary Sample	Sample taken at a depth of 2m at a location 2m south of northern carpark's southern boundary and 10m east of footpath. (BH11)	TRH/BTEX, Metals
9528/BH11/3. 0	Primary Sample	Sample taken at a depth of 3m at a location 2m south of northern carpark's southern boundary and 10m east of footpath. (BH11)	TRH/BTEX, PAHs, VOCs
9528/BH11/4. 0	Primary Sample	Sample taken at a depth of 4m at a location 2m south of northern carpark's southern boundary and 10m east of footpath. (BH11)	TRH/BTEX, PAHs, Metals, Phenols, VOCs

Sample Number	Sample Type	Location Collected	Analysis Performed
9528/BH12/0. 2-0.3	Primary Sample	Sample taken at a depth of 0.2-0.3m at a location 5.5m east of footpath and 2m south of northern carpark's southern boundary. (BH12)	PAHs, Metals
9528/BH12/1. 0	Primary Sample	Sample taken at a depth of 1m at a location 5.5m east of footpath and 2m south of northern carpark's southern boundary. (BH12)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH12/2. 0	Primary Sample	Sample taken at a depth of 2m at a location 5.5m east of footpath and 2m south of northern carpark's southern boundary. (BH12)	TRH/BTEX, Metals
9528/BH12/3. 0	Primary Sample	Sample taken at a depth of 3m at a location 5.5m east of footpath and 2m south of northern carpark's southern boundary. (BH12)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH12/4. 0	Primary Sample	Sample taken at a depth of 4m at a location 5.5m east of footpath and 2m south of northern carpark's southern boundary. (BH12)	TRH/BTEX
9528/BH13/0. 2-0.3	Primary Sample	Sample taken at a depth of 0.2-0.3m at a location 5m east of footpath and 9m south of north-west corner of the building. (BH13)	TRH/BTEX, PAHs, Metals
9528/BH13/1. 0	Primary Sample	Sample taken at a depth of 1m at a location 5m east of footpath and 9m south of north-west corner of the building. (BH13)	TRH/BTEX, PAHs, Metals, Phenols
9528/BH13/1. 0	Primary Sample	Sample taken at a depth of 1m at a location 5m east of footpath and 9m south of north-west corner of the building. (BH13)	PAHs, Metals
9528/BH13/2. 0	Primary Sample	Sample taken at a depth of 2m at a location 5m east of footpath and 9m south of north-west corner of the building. (BH13)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH13/3. 0	Primary Sample	Sample taken at a depth of 3m at a location 5m east of footpath and 9m south of north-west corner of the building. (BH13)	TRH/BTEX, PAHs, Phenols, VOCs
9528/BH13/4. 0	Primary Sample	Sample taken at a depth of 4m at a location 5m east of footpath and 9m south of north-west corner of the building. (BH13)	TRH/BTEX, Metals
9528/BH14/0. 2-0.3	Primary Sample	Sample taken at a depth of 0.2-0.3m at a location 4.5m west and 3m north of north-west corner of the building. (BH14)	TRH/BTEX, PAHs, VOCs

Sample Number	Sample Type	Location Collected	Analysis Performed
9528/BH14/1. 0	Primary Sample	Sample taken at a depth of 1m at a location 4.5m west and 3m north of north-west corner of the building. (BH14)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH14/2. 0	Primary Sample	Sample taken at a depth of 2m at a location 4.5m west and 3m north of north-west corner of the building. (BH14)	PAHs, Metals
9528/BH14/3. 0	Primary Sample	Sample taken at a depth of 3m at a location 4.5m west and 3m north of north-west corner of the building. (BH14)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH14/4. 0	Primary Sample	Sample taken at a depth of 4m at a location 4.5m west and 3m north of north-west corner of the building. (BH14)	TRH/BTEX, Metals
9528/BH15/0. 2-0.3	Primary Sample	Sample taken at a depth of 0.2-0.3m at a location 5m east of footpath and 15m south of north-west corner of the building. (BH15)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH15/1. 0	Primary Sample	Sample taken at a depth of 1m at a location 5m east of footpath and 15m south of north-west corner of the building. (BH15)	TRH/BTEX
9528/BH15/2. 0	Primary Sample	Sample taken at a depth of 2m at a location 5m east of footpath and 15m south of north-west corner of the building. (BH15)	TRH/BTEX, PAHs, Metals
9528/BH15/3. 0	Primary Sample	Sample taken at a depth of 3m at a location 5m east of footpath and 15m south of north-west corner of the building. (BH15)	TRH/BTEX, PAHs, Metals, Phenols
9528/BH15/4. 0	Primary Sample	Sample taken at a depth of 4m at a location 5m east of footpath and 15m south of north-west corner of the building. (BH15)	PAHs, Metals
9528/BH16/0. 2-0.3	Primary Sample	Sample taken at a depth of 0.2-0.3m at a location 3m east of footpath and 7m north of north-west corner of the building. (BH16)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH16/1. 0	Primary Sample	Sample taken at a depth of 1m at a location 3m east of footpath and 7m north of north-west corner of the building. (BH16)	TRH/BTEX, PAHs, Phenols, VOCs
9528/BH16/2. 0	Primary Sample	Sample taken at a depth of 2m at a location 3m east of footpath and 7m north of north-west corner of the building. (BH16)	TRH/BTEX, Metals

Sample Number	Sample Type	Location Collected	Analysis Performed
9528/BH16/3. 0	Primary Sample	Sample taken at a depth of 3m at a location 3m east of footpath and 7m north of north-west corner of the building. (BH16)	TRH/BTEX, PAHs, VOCs
9528/BH16/4. 0	Primary Sample	Sample taken at a depth of 4m at a location 3m east of footpath and 7m north of north-west corner of the building. (BH16)	TRH/BTEX, PAHs, Metals, Phenols, VOCs
9528/BH1/0.2-	Blind	Blind Replicate of 9528/BH1/0.2-0.3	TRH/BTEX, PAHs,
0.3a	Replicate	(BH1)	Metals
9528/BH1/0.2-	Split	Split Replicate of 9528/BH1/0.2-0.3	TRH/BTEX, PAHs,
0.3b	Replicate	(BH1)	Metals
9528/BH14/1.	Blind	Blind Replicate of 9528/BH14/1.0	TRH/BTEX, PAHs,
0a	Replicate	(BH14)	Metals
9528/BH14/1.	Split	Split Replicate of 9528/BH14/1.0	TRH/BTEX, PAHs,
0b	Replicate	(BH14)	Metals
0 9528/BH1/0.2- 0.3a 9528/BH1/0.2- 0.3b 9528/BH14/1. 0a 9528/BH14/1.	Sample Blind Replicate Split Replicate Blind Replicate Split Replicate	Sample taken at a depth of 4m at a location 3m east of footpath and 7m north of north-west corner of the building. (BH16) Blind Replicate of 9528/BH1/0.2-0.3 (BH1) Split Replicate of 9528/BH1/0.2-0.3 (BH1) Blind Replicate of 9528/BH14/1.0 (BH14)	Metals, Phenols VOCs TRH/BTEX, PAH Metals TRH/BTEX, PAH Metals TRH/BTEX, PAH Metals TRH/BTEX, PAH

Table 10-3: Sample Information

Primary and replicate soil samples that were to be analysed were sampled directly off the auger using a stainless steel trowel and placed directly into new 250mL clean glass jars with screw top plastic lids with inert plastic inserts. Samples of soil for analysis of asbestos content were collected and placed within zip-loc bags.

Between samples sampling equipment was decontaminated using a 5% Decon 90 solution, rinsed with Milli Q water and dried with Kimberly Clark Epic Wipes.

The glass jars and zip-loc bags were labelled using a waterproof permanent marker pen with the date, a Getex unique reference number that indicated the sampling location, and a sub sample number. The samples were then stored on ice in an insulated container until they were delivered to the laboratory within acceptable holding times.

The chain of custody process involved writing the Getex unique reference number on the sample jars at the time of sampling and on the chain of custody form. The chain of custody form remained with the samples until they were delivered to the laboratory. Once delivered to the laboratory the officer at sample receipt signed the chain of custody form taking responsibility for the samples. A copy of the chain of custody showing the time of delivery, condition of samples (cold etc) and the unique laboratory number was emailed to Getex by the laboratory. On receipt Getex checked that the laboratory details were correct.

10.3 Groundwater Sampling Program

Three monitoring wells were installed on the 27th of September 2016 to enable the sampling and analysis of groundwater beneath the Site. The wells were installed to intersect a shale aquifer.

Groundwater sampling was conducted on the site from three (3) groundwater monitoring wells to assess potential groundwater impacts on the 29th of September 2016.

The wells were identified as GW1 - GW3. Monitoring well locations are shown on the Groundwater Well Site Map in **Appendix I**.

The borehole drilling and monitoring well installation was undertaken by Stratacore Drilling Pty Ltd using an COMACCHIO GEO205 drill rig with a 100mm solid flight auger under the supervision and instruction of Getex.

The following steps were undertaken during borehole drilling and monitoring well installation:

- The borehole was drilled with a 100mm solid flight auger to an approximate maximum depth of 10m.
- The monitoring well consisted of a slotted 50mm PVC screen and casing. Each section of pipe was screw-threaded to avoid the use of solvents.
- A filter screen of graded, washed and sorted 5mm sand was poured into the borehole annular to cover the screened section of the casing. Bentonite was used to seal the borehole and prevent fluid inflow into target water bearing zones from higher strata via the borehole. Finally cement was used to seal the remainder of the borehole.
- Each well was installed with a gatic to protect the well head which was sealed with a cap.

Between 7m and 10m of 50mm slotted PVC screen was installed, with the remainder of the borehole cased off with 50mm PVC pipe.

On the 27th of September 2016, following the installation of the well, groundwater level measurements were taken using a water level metre and well development was then undertaken using a submersible pump. All wells were purged until dry.

On 29th of September 2016, following the well development period, the ground water level measurements were taken again using a water level meter. Wells GW1 – GW5 were then sampled with a low-flow bladder pump at one height using the low-flow bladder pump. The groundwater monitoring wells produced a sufficient volume of water for sampling.

The groundwater samples to be analysed for heavy metals TRHs (C10-C36) and PAHs were collected in a clean non-treated 500mL amber glass organics bottles. Groundwater samples to be analysed for TRHs (C6-C9), BTEX and VOCs were collected in two preserved 40mL zero head space vials with Teflon septums. Groundwater samples to be analysed for Heavy Metals were collected in an inert plastic 50mL bottle with preservative and a clean non-treated 500mL amber glass bottles. Groundwater samples to be analysed for Phenols were collected in an inert plastic 50mL bottle with preservative. Groundwater samples to be analysed for Phenols were collected in an inert plastic 50mL bottle with preservative. Groundwater samples to be analysed for EC, pH were collected in an inert plastic 50mL bottle.

The bottles and vials were labelled using a waterproof permanent marker pen with the date, a Getex unique reference number that indicated the sampling location and sub sample number. The samples were then stored on ice in an insulated container. The samples remained on ice until they were delivered to the laboratory under chain of custody.

The chain of custody process involved writing the Getex unique reference number on the sample bottle/vial at the time of sampling and on the chain of custody form. The chain of custody form remained with the samples until they were delivered to the laboratory. Once delivered to the laboratory the officer at the sample receipt signed the chain of custody form taking responsibility for the samples. A copy of the chain of custody showing the time of

delivery, condition of samples (cold etc) and the unique laboratory number was emailed to Getex by the laboratory. On receipt Getex checked that the laboratory details were correct.

Sample Number	Sample Type	Location Collected	Analysis Performed
9528/W1	Primary Sample	Sample taken from a depth of 6m BGL at location GW1	TRH/BTEX, Metals, PAHs, Phenols, VOCs, pH, EC
9528/W2	Primary Sample	Sample taken from a depth of 6m BGL at location GW2	TRH/BTEX, Metals, PAHs, Phenols, VOCs, pH, EC
9528/W3	Primary Sample	Sample taken from a depth of 6m BGL at location GW3	TRH/BTEX, Metals, PAHs, Phenols, VOCs, pH, EC
9528/W2a	Replicate Sample	Blind Sample of 9528/W2	TRH/BTEX, Metals, PAHs, pH, EC
9528/W2b	Replicate Sample	Split Sample of 9528/W2	TRH/BTEX, Metals, PAHs, pH, EC

Table 10-4: Groundwater Sample Information

10.4 Tank Water Sampling Program

Justin Thompson-Laing of Getex Pty Ltd attended the site on the 9th and 10th of August 2016.

The underground water detention tank was located approximately 10m west of the northwest corner of the building. The tank was approximately 10.5m x 4.5m. The depth of the tank is unknown. The surface water within the tank was found to contained clear water with low turbidity. There was no sheen observed on the surface. No aquatic life was observed.

The following table presents a summary of the locations for the three (3) samples collected within the Site. Please refer to **Appendix I** for the Site Map.

Sample Number	Sample Type	Analysis Performed	
9528/WDT/W1	28/WDT/W1 Primary Sample taken from the south-east access of the Water Detention Tank		TRH, BTEX, Metals, PAHs, Phenols, pH, EC, VOCs
9528/WDT/W1a	Replicate Sample	Blind Sample of 9528/WDT/W1	TRH, BTEX, Metals, PAHs, Phenols, pH, EC
9528/WDT/W1b	Replicate Sample	Split Sample of 9528/WDT/W1	TRH, BTEX, Metals, PAHs, Phenols, pH, EC

Table 10-5: Surface Water Sample Information

The surface water samples to be analysed for heavy metals, TRHs (C10-C36), PAHs, EC and pH were collected in a clean non-treated 500mL amber glass organics bottles. Surface water samples to be analysed for TRHs (C6-C9), BTEX and VOCs were collected in two preserved 40mL zero head space vials with Teflon septums. Surface water samples to be analysed for Phenols were collected in an inert plastic 50mL bottle with preservative.

The bottles and vials were labelled using a waterproof permanent marker pen with the date, a Getex unique reference number that indicated the sampling location and sub sample number. The samples were then stored on ice in an insulated container. The samples remained on ice until they were delivered to the laboratory under chain of custody.

The chain of custody process involved writing the Getex unique reference number on the sample bottle/vial at the time of sampling and on the chain of custody form. The chain of custody form remained with the samples until they were delivered to the laboratory. Once delivered to the laboratory the officer at the sample receipt signed the chain of custody form taking responsibility for the samples. A copy of the chain of custody showing the time of delivery, condition of samples (cold etc) and the unique laboratory number was emailed to Getex by the laboratory. On receipt Getex checked that the laboratory details were correct.

Samples were filtered within the laboratory where necessary.

11. ASSESSMENT CRITERIA

11.1 Regulatory Guidelines

The investigation was undertaken in general accordance with the following guidelines, as relevant:

- Contaminated Sites: Sampling Design Guidelines, NSW EPA, 1995;
- Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites, NSW EPA, 2011;
- Contaminated Sites: Guidelines for the NSW Site Auditor Scheme, 2nd Edition, NSW EPA, 2006;
- Contaminated Sites: Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997, NSW EPA, 2015;
- National Environment Protection (Assessment of Site Contamination) Measure, National Environment Protection Council, 1999, as amended 2013;
- National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ), October 2000;
- Environmental Health Risk Assessment: Guidelines for assessing human health risks from environmental hazards, Department of Health and Ageing and EnHealth Council, Commonwealth of Australia, June 2002; and
- Waste Classification Guidelines: Part 1 Classifying Waste, NSW EPA, 2014.

11.2 Soil Aesthetic Considerations

The National Environment Protection (Assessment of Site Contamination) Measure, 1999, as amended 2013 states, "aesthetic issues generally relate to the presence of low-concern or non-hazardous inert foreign material in soil or fill resulting from human activity". Caution is also recommended when assessing a site for potentially sensitive land uses (such as residential) when significant quantities of fill or demolition materials are present.

Soil or fill material tested to be within accepted human health and environmental guideline levels may still contain low-concern or non-hazardous inert foreign material. Examples of these foreign materials include bricks, tiles, metal piping, glass, concrete, bitumen and plastics.

The quantity, type and distribution of foreign materials identified within the soil profile will be considered in relation to the future land use. In assessing the sensitivity of future site users to aesthetic issues consideration will be given to the depth of the material in relation to the future site levels following any development, the practicality of management options and the ability of the foreign materials to cause concern.

11.3 Soil Analysis Criteria

Health-based soil Criteria Levels can be applied for a range of different exposure settings, which are based on the nature of the use(s) for which the land is currently used and/or its approved use(s).

Given that the proposed development is a Medical Centre, therefore the assessment criteria are based on exposure setting D.

Health Investigation Levels (HILs) are based on Commercial/Industrial D from Table 1A(1) from the *National Environment Protection (Assessment of Site Contamination) Measure,* National Environment Protection Council, 1999, as amended 2013.

Health Screening Levels (HSLs) petroleum hydrocarbon compounds are based on Commercial/Industrial and soil classification Sand, Silt or Clay (dependant on the sample) from Table 1A(3) from the *National Environment Protection (Assessment of Site Contamination) Measure,* National Environment Protection Council, 1999, as amended 2013.

Ecological Screening/Investigation Levels are to be applied to soil within 2m below the proposed ground level.

Ecological Screening Levels for petroleum hydrocarbon compounds are based on Commercial/Industrial and soil texture Fine from Table 1B(6) from the *National Environment Protection (Assessment of Site Contamination) Measure,* National Environment Protection Council, 1999, as amended 2013.

Ecological Investigation Levels (EILs) are based on "Commercial/Industrial" from the *National Environment Protection (Assessment of Site Contamination) Measure,* National Environment Protection Council, 1999, as amended 2013. EILs have been derived for arsenic, copper, chromium (III), DDT, naphthalene, nickel, lead and zinc.

The EILs presented for zinc, chromium (III), copper and lead are added contaminant limits (ACLs) based on added concentrations. The EILs is calculated from summing the ACL and the ambient background concentration (ABC) to derive the site-specific soil quality guideline (SQG) taking into account the effect caused by pH and exchangeable cations in soil that can affect concentration toxicity data.

Values presented for arsenic, naphthalene and DDT are generic EILs based on total concentrations and fresh contaminants.

The EIL for lead has been calculated using the most conservative SQG value based upon the reported pH and exchangeable cation values. All other EIL's have assumed that the majority of any contamination on site is greater than 2 years old. Where EIL values required input including CEC, pH and organic content, value from the upper soil horizon was used. A summary of the EIL input values is:

- Cation exchange capacity: 17 cmolc/kg;
- pH: 5.8;
- organic carbon: 0.64%;
- iron: 4.8%; and
- clay: 47%.

The spreadsheet calculations are presented in Appendix III.

Acceptance criteria levels are given within **Appendix III** alongside the sample analysis results.

11.4 Groundwater Criteria

The groundwater analyses were assessed predominately against the adopted ecological criteria from the column "Fresh Waters" of Table 1-C of *National Environment Protection (Assessment of Site Contamination) Measure,* National Environment Protection Council, 1999, as amended 2013. Where no criteria levels were available in NEPM 2013, the laboratory limit of detection was used as an indicative criteria level.

The above mentioned acceptance criteria adopted for the purposes of this investigation are listed in **Appendix III** alongside the analysis results for the samples

11.5 Surface Water Criteria

The surface water analyses were assessed predominately against the adopted ecological criteria from the "Trigger Values for Freshwater, Level of Protection for 95% Species" column in Table 3.4.1 of *National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality*, Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ), October 2000. Where no criteria levels were available in ANZECC 2000, the laboratory limit of detection was used as an indicative criteria level.

The above mentioned acceptance criteria adopted for the purposes of this investigation are listed in **Appendix III** alongside the analysis results for the samples.

11.6 Waste Classification Assessment Criteria

Off-site disposal of fill, contaminated material and excess soil/rock excavated as part of the proposed development works is regulated by the provisions of the *Protection of the Environment Operations Act* (1997) and associated regulations and guidelines including the NSW EPA Waste Classification Guidelines 2014 All materials should be classified in accordance with these guidelines prior to disposal.

For the purpose of off-site disposal, the classification of soil into 'General Solid Waste (non-putrescible)', 'Restricted Solid Waste (non-putrescible)' and 'Hazardous Waste (non-putrescible)' categories is defined by chemical contaminant criteria outlined in the NSW EPA Waste Classification Guidelines 2014.

The waste classification criteria are listed in **Appendix III** alongside the analysis results for the samples.

12. QUALITY ASSURANCE / QUALITY CONTROL

All sampling and analysis was conducted by an appropriately trained and qualified Getex consultant. All sampling information was documented and where necessary collected utilising properly maintained equipment. Prior to use all equipment was assessed for appropriateness and inspected for defects.

The sampling and analysis program included, for Quality Assurance / Quality Control (QA/QC) purposes, the analysis of blind and split replicate samples. For soil sampling two blind and two split replicates were taken for TRH, BTEX, PAHs and Metals. For groundwater sampling one blind and one split replicate were taken for TRH, BTEX, PAHs, Metals, EC and pH. For tank water sampling one blind and one split replicate were taken for TRH, BTEX, PAHs, Metals, EC and pH. For tank water sampling one blind and one split replicate were taken for TRH, BTEX, PAHs, Metals, EC and pH. The primary and blind replicate samples were sent to the same laboratory (Envirolab Services Pty Ltd) and the split replicates were to an independent laboratory (Eurofins).

Please Refer to **Appendix V** for QA/QC Results and Assessment.

The QA/QC data is considered satisfactory and the quality of the sampling data considered suitable for the purposes of the sampling conducted.

13. DISCUSSION

13.1 Soil Aesthetic Discussion

Based upon field observations, nothing was identified in the soil within the Project Area that would trigger concerns from an aesthetic standpoint.

13.2 Soil Headspace Screening Discussion

PID screening of soil sample headspace within Borehole BH5 identified slightly elevated levels compared to the other boreholes. The PID level increased to a maximum of 12.4ppm at a depth of 2m before decreasing at further depths. A soil sample was collected at 2m and analysed for VOCs.

PID screening of soil sample headspace within the remaining boreholes did not identify levels above 4.4ppm and are considered well below the level that would require further investigation.

Landfill Gas screening of soil sample headspace within the boreholes did not identify levels above 0.0% for CH_4 and 0.0ppm for H_2S and are considered well below the level that would require further investigation.

13.3 Soil Analytical Discussion

The summaries of laboratory results are discussed in the following sections.

13.3.1 TRH

A total of 33 soil samples were analysed for TRH fractions. All results for F1 (C6-C10 minus BTEX), F2 (C10-C16 minus Napthalene), F3 (C16-C34) and F4 (C34-C40) were below the adopted Site assessment criteria.

Waste Classification

The results of all analyses were less than the CT1 criteria outlined in the Waste Classification Guidelines 2014.

13.3.2 BTEX

A total of 33 soil samples were analysed for BTEX. All concentrations were below the adopted Site assessment criteria.

Waste Classification

The results of all analyses were less than the CT1 criteria outlined in the Waste Classification Guidelines 2014.

13.3.3 Metals

A total of 41 soil samples were analysed for Metals. All concentrations were below the adopted Site assessment criteria.

Waste Classification

The results of all analyses were less than the CT1 criteria outlined in the Waste Classification Guidelines 2014.

13.3.4 PAHs

A total of 30 soil samples were analysed for PAHs. All concentrations were below the adopted Site assessment criteria.

Waste Classification

The results of all analyses were less than the CT1 criteria outlined in the Waste Classification Guidelines 2014.

13.3.5 Phenols

A total of 12 soil samples were analysed for Phenols. All concentrations were below the adopted Site assessment criteria.

Waste Classification

The results of all analyses were less than the CT1 criteria outlined in the Waste Classification Guidelines 2014.

13.3.6 OCP/OPPs

A total of 4 soil samples were analysed for OCP/OPPs. All concentrations were below the adopted Site assessment criteria.

13.3.7 PCBs

A total of 8 soil samples were analysed for PCBs. All concentrations were below the adopted Site assessment criteria.

Waste Classification

The results of all analyses were less than the CT1 criteria outlined in the Waste Classification Guidelines 2014.

13.3.8 VOCs

A total of 6 soil samples were analysed for VOCs. All concentrations were below the adopted Site assessment criteria.

13.3.9 Ammonia

A total of 6 soil samples were analysed for Ammonia. All concentrations were below the adopted Site assessment criteria.

13.3.10 Asbestos

A total of 8 soil samples were analysed for Asbestos. All concentrations were below the adopted Site assessment criteria.

13.4 Groundwater Analytical Discussion

The summaries of laboratory results are discussed in the following sections.

13.4.1 TPH

A total of 3 water sample was analysed for TPH fractions. All results for F1 (C6-C10 minus BTEX), F2 (C10-C16 minus Napthalene), F3 (C16-C34) and F4 (C34-C40) were below the adopted Site assessment criteria.

13.4.2 BTEX

A total of 3 water sample was analysed for BTEX. All concentrations were below the adopted Site assessment criteria.

13.4.3 Metals

A total of 3 water sample was analysed for Metals. Metal concentrations were generally below the nominated assessment guidelines with the following exceptions:

- Dissolved Copper in samples 9528/W1, 9528/W2 and 9528/W3, which exceeded the adopted Site assessment criteria;
- Dissolved Nickel in sample 9528/W1, which exceeded the adopted Site assessment criteria; and
- Dissolved Zinc in samples 9528/W1 and 9528/W2, which exceeded the adopted Site assessment criteria.

13.4.4 PAHs

A total of 3 water sample was analysed for PAHs. All concentrations were below the adopted Site assessment criteria.

13.4.5 Phenols

A total of 3 water sample was analysed for Phenols. All concentrations were below the adopted Site assessment criteria.

13.4.6 VOCs

A total of 3 water sample was analysed for VOCs. All concentrations were either below the adopted Site assessment criteria or the limit of laboratory detection. Therefore the result is considered acceptable.

13.4.7 EC

A total of 3 water sample was analysed for pH. Samples 9528/W1 and 9528/W3 had a concentration of 12,000 μ S/cm while sample 9528/W2 had a concentration of 15,000 μ S/cm.

13.4.8 pH

A total of 3 water sample was analysed for pH. All samples had a pH of 7.1.

13.5 Tank Water Analytical Discussion

The summaries of laboratory results are discussed in the following sections.

13.5.1 TPH

A total of 1 water sample was analysed for TPH fractions. All results for F1 (C6-C10 minus BTEX), F2 (C10-C16 minus Napthalene), F3 (C16-C34) and F4 (C34-C40) were below the adopted Site assessment criteria.

13.5.2 BTEX

A total of 1 water sample was analysed for BTEX. All concentrations were below the adopted Site assessment criteria.

13.5.3 Metals

A total of 1 water sample was analysed for Metals. All concentrations were below the adopted Site assessment criteria.

13.5.4 PAHs

A total of 1 water sample was analysed for PAHs. All concentrations were below the adopted Site assessment criteria.

13.5.5 Phenols

A total of 1 water sample was analysed for Phenols. All concentrations were below the adopted Site assessment criteria.

13.5.6 VOCs

A total of 1 water sample was analysed for VOCs. All concentrations were either below the adopted Site assessment criteria or the limit of laboratory detection. Therefore the result is considered acceptable.

13.5.7 EC

A total of 1 water sample was analysed for EC. All concentrations were within the adopted Site assessment criteria.

13.5.8 pH

A total of 1 water sample was analysed for pH. All concentrations were within the adopted Site assessment criteria.

13.6 Response to Identified Decisions

The results are discussed in the following sections in relation to the identified decisions developed as part of the DQO process (**Section 10.1.2**):

- Is there any contamination within the Project Area soil that will pose a risk to future onsite and offsite receptors?
- Is there any contamination within the Project Area groundwater that will pose a risk to future onsite and offsite receptors?
- Is the water present in the underground detention tank contaminated?

13.6.1 Risks to Future Onsite and Offsite Receptors from Soil Contamination

The collected samples of the soil were analysed for a broad range of identified potential contaminants including TRH, BTEX, Metals, PAHs, Phenols, Ammonia, Asbestos and VOCs. All chemical contaminant concentrations were below the adopted criteria and PID and Landfill Gas analysis of soil headspace for VOCs and CH₄ respectively was within acceptable levels.

As such, chemical contaminant concentrations within soils do not represent an unacceptable risk to human and environmental health with respect to the proposed future Site use.

13.6.2 Risks to Future Receptors from Groundwater Contamination

The collected samples of the groundwater were analysed for a broad range of identified potential contaminants including TRH, BTEX, Metals, PAHs, Phenols, EC, pH and VOCs. All chemical contaminant concentrations were below the adopted criteria with the exception of Copper, Nickel and Zinc. Although the concentration of these metals were detected above the criteria, the levels detected are considered indicative of disturbed urban ecosystems such as the location of the Site which is known to be impacted by metals contamination.

As the depth of the water bearing zone is below the maximum depth of construction works, there is no expected human contact with the groundwater. Therefore it is the opinion of the consultant that the elevated concentrations of Copper, Nickel and Zinc are acceptable provided:

- The groundwater is not used as a drinking water source; and
- A follow-up groundwater monitoring round is completed for Metals to confirm the metal concentrations within the groundwater.

13.6.3 Risks to Future Receptors from Underground Detention Tank Contamination

The collected samples of the surface water were analysed for a broad range of identified potential contaminants including TRH, BTEX, Metals, PAHs, Phenols, EC, pH and VOCs. All chemical contaminant concentrations were below the adopted criteria. As such, chemical contaminant concentrations detected within the underground detention tank water do not represent an unacceptable risk to human health with respect to the proposed future Site use.

13.7 Waste Classification

13.7.1 Classification of Fill Soils

Based on the results of the assessment, the fill material is classified as 'General Solid Waste (non-putrescible)' according to the criteria outlined in NSW EPA Waste Classification Guidelines 2014.

The material should be disposed of to a suitably licensed waste receival facility.

13.7.2 Classification of Natural Soil and Bedrock

The natural silty clay and underlying shale bedrock at the Site is considered to be virgin excavated natural material (VENM). The material is considered suitable for re-use onsite, or alternatively, the information included in this report may be used to assess whether the material is suitable for beneficial reuse at another site as fill material.

Where doubt exists about the difference between fill and VENM material an environmental consultant should be contacted.

VENM must not be mixed with any fill material (including building rubble) as this will invalidate the VENM classification.

14. CONCLUSIONS AND RECOMMENDATIONS

Soil samples taken from locations across the Project Area were analysed for a broad range of identified potential contaminants. All chemical contaminant concentrations were below the adopted criteria and PID and Landfill Gas analysis of soil headspace for VOCs and CH₄ respectively was within acceptable levels. As such, the detected chemical contaminant concentrations within soils do not indicate an unacceptable risk to human and environmental health with respect to the proposed future Site use.

Groundwater samples taken from locations along the eastern boundary of the Project Area were analysed for a broad range of identified potential contaminants. All chemical contaminant concentrations were below the adopted criteria with the exception of Copper, Nickel and Zinc. Although the concentration of these metals were detected above the criteria, the levels detected are considered indicative of disturbed urban ecosystems such as the location of the Site which is known to be impacted by metals contamination.

As the depth of the water bearing zone is below the maximum depth of construction works, there is no expected human contact with the groundwater. Therefore it is the opinion of the consultant that the elevated concentrations of Copper, Nickel and Zinc are acceptable provided:

- The groundwater is not used as a drinking water source; and
- A follow-up groundwater monitoring round is completed prior to construction works commencing for Metals to confirm the metal concentrations within the groundwater.

All detected chemical contaminant concentrations in the water sample collected from the underground detention tank were below the adopted criteria. As such, the detected chemical contaminant concentrations within the underground detention tank water do not indicate a risk to human and environmental health with respect to the proposed future Site use.

Therefore, based on the findings of this investigation and subject to the limitations in Section 4, it is concluded that the Project Area would be suitable for the proposed development

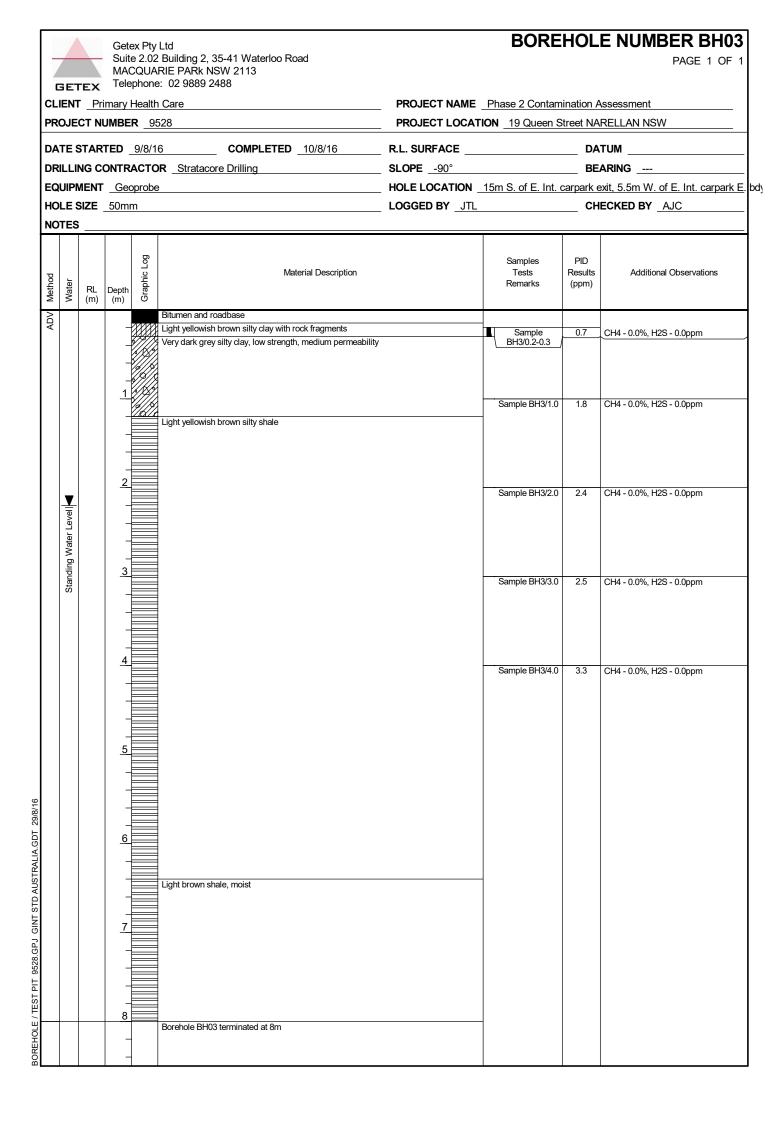
APPENDIX I

SITE MAP

FIGURE 3: SITE SKETCH 19 Queen Street, NARELLAN NSW 2567 *Aerial image derived from Google Earth and is indicative of on-ground locations only

*Aerial image derived from Google Earth and is indicative of on-ground locations only

GETEX



APPENDIX II

BOREHOLE LOGS

	GET	rex	Suite MAC	CQUA	Ltd ? Building 2, 35-41 Waterloo Road RIE PARk NSW 2113 e: 02 9889 2488				E NUMBER BH01 PAGE 1 OF 1		
					n Care						
PR	OJE	CT NI	JMBE	R _9	528	PROJECT LOCATION 19 Queen Street NARELLAN NSW					
DA	TE S	STAR	TED _	9/8/1	6 COMPLETED 10/8/16	R.L. SURFACE		DA	TUM		
DR	RILLI	NG C	ONTR/	АСТС	R Stratacore Drilling	_ SLOPE 90°		BE	ARING		
EC	UIP	MENT	Geo	probe	3	HOLE LOCATION	8.5m N. of S. car	park S. b	ody, 2m E. of E. Int. carpark W. b		
			50mr								
NC	DTES										
Method	Water		Depth (m)	Graphic Log	Material Description		Samples Tests Remarks	PID Results (ppm)	Additional Observations		
ADV				,,,,,	Bitumen & roadbase						
∣◄					Mottled brown and dark grey clay, medium permeability		Sample BH1/0.2-0.3	1.4	CH4 - 0.0%, H2S - 0.0ppm		
			-		Strong brown silty clay, med-low permeability						
			-		Mottled brown and white clay, med-low permeability		Sample BH1/1.0	2.4	CH4 - 0.0%, H2S - 0.0ppm		
					Light yellowish brown silty shale		Sample BH1/2.0	2.6	CH4 - 0.0%, H2S - 0.0ppm		
			-								
			3				Sample BH1/3.0	2.7	CH4 - 0.0%, H2S - 0.0ppm		
			4		Borehole BH01 terminated at 4m		Sample BH1/4.0	2.4	CH4 - 0.0%, H2S - 0.0ppm		
			- - 5 -								
			- - 6 -								
			_ _7								
			_								

		-	MACQ	02 Building 2, 35-41 Waterloo Road JARIE PARk NSW 2113		BORE	HOL	PAGE 1 OF 1
				one: 02 9889 2488 Ith Care		_ Phase 2 Contam	ination 4	Assessment
				9528	PROJECT LOCA			
DA	TES	STAR	TED _9/8	3/16 COMPLETED 10/8/16	R.L. SURFACE		DA	
DR	ILLI	NG C	ONTRAC	FOR _Stratacore Drilling	SLOPE 90°		BE	ARING
				be				
	TES		Johnin			-		
Method	Water	RL (m)	Depth (m) C	Material Description		Samples Tests Remarks	PID Results (ppm)	Additional Observations
ADV				Bitunen and roadbase Light brown clay Light yellowish brown silty shale, strength increased as do	epth increased	Sample BH2/0.2-0.3	1.3	CH4 - 0.0%, H2S - 0.0ppm
						Sample BH2/1.0	2.9	CH4 - 0.0%, H2S - 0.0ppm
			2			Sample BH2/2.0	3.0	CH4 - 0.0%, H2S - 0.0ppm
			3			Sample BH2/3.0	2.5	CH4 - 0.0%, H2S - 0.0ppm
			4	Borehole BH02 terminated at 4m		Sample BH2/4.0	3.4	CH4 - 0.0%, H2S - 0.0ppm
			-					
			<u>6</u> – –					
			7					
			_ _ _ <u>8</u>					
			_					

			Suit MAC	CQUA	! Building 2, 35-41 Waterloo Road RIE PARk NSW 2113		BORE	HOL	E NUMBER BH04 PAGE 1 OF 1		
		FEX F Pri			e: 02 9889 2488 n Care	PROJECT NAME	Phase 2 Contam	ination A	Assessment		
						PROJECT LOCATION 19 Queen Street NARELLAN NSW					
DA	TE S	STAR	TED	9/8/1	6 COMPLETED 10/8/16	R.L. SURFACE		DA	TUM		
					R Stratacore Drilling						
					3						
		SIZE		m		_ LOGGED BY _JTL	_ LOGGED BY _JTL CHECKED BY _AJC				
		, <u></u>									
Method	Water	RL (m)	Depth (m)						Additional Observations		
ADV			_	<u>× </u>	Dark brown loam topsoil with organic matter		O and a	0.0	-		
			- - -		Strong brown silty clay, med-low permeability		▲ Sample BH4/0.2-0.3	0.6			
			- - -		Light yellowish brown silty shale		Sample BH4/1.0	3.1			
							Sample BH4/2.0	3.0			
			_ 				Sample BH4/3.0	2.4	-		
			_ _ _ 4								
			 		Borehole BH04 terminated at 4m		Sample BH4/4.0	2.7			
			_ 								
			- - 7 -								

BOREHOLE / TEST PIT 9528.GPJ GINT STD AUSTRALIA.GDT 29/8/16

			MACC	2.02 QUA	Ltd Building 2, 35-41 Waterloo Road RIE PARk NSW 2113 :: 02 9889 2488		BORE	HOL	E NUMBER BH05 PAGE 1 OF 1	
		rex r Pri			Care	PROJECT NAME	Phase 2 Contam	ination /	Assessment	
					528					
						R.L. SURFACE DATUM				
					R Stratacore Drilling					
					·					
NO	DTES	;								
Method	Water	RL (m)	Depth (m)	Graphic Log	Material Description		Samples Tests Remarks	PID Results (ppm)	Additional Observations	
ADV					Bitumen and roadbase					
◄							Sample BH5/0.2-0.3	1.2	CH4 - 0.0%, H2S - 0.0ppm	
			 		Light yellowish brown silty sand, med-high permeability					
							Sample BH5/1.0	11.8	CH4 - 0.0%, H2S - 0.0ppm	
					Light brown weathered shale Light yellowish brown silty shale, increased strength as depth	increased	_			
			2							
							Sample BH5/2.0	12.4	CH4 - 0.0%, H2S - 0.0ppm	
			3				Sample BH5/3.0	12	CH4 - 0.0%, H2S - 0.0ppm	
							Campie Brio/0.0	12	Ci 14 - 0.070, Ti2O - 0.0ppm	
							Sample BH5/4.0	9.8	CH4 - 0.0%, H2S - 0.0ppm	
			5							
,										
5										
			6							
			7							
5					Lakkenlandak kanna 20 J. J.		_			
-	_				Light yellowish brown silty shale, moist		Sample BH5/7.4	4.6	CH4 - 0.0%, H2S - 0.0ppm	
			 8		Shale Bedrock, strength high enough to resist auger Borehole BH05 terminated at 7.5m					

GE	T	EX	MACQL	02 B	d uilding 2, 35-41 Waterloo Road E PARk NSW 2113 02 9889 2488		BORE	HOL	E NUMBER BH06 PAGE 1 OF 1	
					are				Assessment	
PROJ	EC	CT NU	JMBER _	9528	3	_ PROJECT LOCAT	ION 19 Queen S	street NA	RELLAN NSW	
						R.L. SURFACE DATUM				
					Stratacore Drilling					
						HOLE LOCATION _3m N. and 1m W. of N.E. corner of bld				
						_ LOGGED BY _JTL		СН	ECKED BY _AJC	
NOTE	:5									
Method Water	WALCI	RL (m)	Depth (m)		Material Description		Samples Tests Remarks	PID Results (ppm)	Additional Observations	
ADV				· · ·	ark brown loam topsoil with organic matter rownish yellow sand with rock fragments/gravel					
4					ownish yellow sand with rock tragments/gravel		Sample BH6/0.2-0.3	2.3	CH4 - 0.0%, H2S - 0.0ppm	
					ght yellowish brown silty shale		Sample BH6/1.0	3.4	CH4 - 0.0%, H2S - 0.0ppm	
							Sample BH6/2.0	3.4	CH4 - 0.0%, H2S - 0.0ppm	
							Sample BH6/3.0	3.1	CH4 - 0.0%, H2S - 0.0ppm	
				Bo	orehole BH06 terminated at 4m		Sample BH6/4.0	2.8	CH4 - 0.0%, H2S - 0.0ppm	

BOREHOLE / TEST PIT 9528.GPJ GINT STD AUSTRALIA.GDT 29/8/16

			MACQUA Telephone	Ltd Building 2, 35-41 Waterloo Road RIE PARk NSW 2113 e: 02 9889 2488 I Care	PROJECT NAME		_	PAGE 1 OF 1
PR	OJE		JMBER 9	528	PROJECT LOCAT	ION 19 Queen S	Street NA	RELLAN NSW
DA	TES	STAR	TED 9/8/1	6 COMPLETED 10/8/16	R.L. SURFACE DATUM			
				R _ Stratacore Drilling				
)				
					LOGGED BY _JTL CHECKED BY _AJC			
NC	DTES							
Method	Water	RL (m)	(m) Graphic Log	Material Description		Samples Tests Remarks	PID Results (ppm)	Additional Observations
ADV			<u>× 1</u> / ×	Dark brown loam topsoil with organic matter				
4			-	Strong brown silty clay, med-high permeability		Sample BH7/0.2-0.3		
				Light yellowish brown silty shale, increased strength as depl	th increased		1.6	
			2			Sample BH7/2.0	2.3	
			3			Sample BH7/3.0	3.2	
			4			Sample BH7/4.0	2.5	
T 29/8/16			5					
STD AUSTRALIA.GE								
BOREHOLE / TEST PIT 9528.GPJ GINT STD AUSTRALIA.GDT 298/16								
ŰĽ			8					
BOREHOLE				Borehole BH07 terminated at 8m				

	GET	TEX	Suit MAC	CQUA	Ltd : Building 2, 35-41 Waterloo Road RIE PARk NSW 2113 e: 02 9889 2488		BORE	HOL	E NUMBER BH08 PAGE 1 OF 1		
					i Care						
					528						
					6 COMPLETED <u>10/8/16</u>						
						SLOPE -90° BEARING HOLE LOCATION 24m E. of footpath, 2m S. of N. carpark S. bdy					
		; ;									
Method	Water	RL (m)	Depth (m)	Graphic Log	Material Description		Samples Tests Remarks	PID Results (ppm)	Additional Observations		
ADV			_		Dark brown loam topsoil with organic matter Strong brown silty clay, med-high permeability						
			_		Light yellowish silty shale		Sample BH8/0.2-0.3	0.9			
			-								
			_ 1								
							Sample BH8/1.0	1.2			
			_								
			-								
			2								
							Sample BH8/2.0	1.0			
			_								
			-								
			3								
			_				Sample BH8/3.0	1.3			
			-								
			-								
			4						_		
			_		Borehole BH08 terminated at 4m		Sample BH8/4.0	0.9			
			_								
			-								
			5								
			_								
,			-								
			6								
			-								
			-								
			7								
			-								
			8								
			-								

BOREHOLE / TEST PIT 9528.GPJ GINT STD AUSTRALIA.GDT 29/8/16

			MACQUA	Ltd 2 Building 2, 35-41 Water RIE PARk NSW 2113 e: 02 9889 2488	loo Road		BORE	HOLI	E NUMBER BH09 PAGE 1 OF 1
				n Care		PROJECT NAME	Phase 2 Contam	ination A	ssessment
				528		PROJECT LOCAT			
									ГИМ
									ARING
									S. of bld
									ECKED BY _AJC
NC	DTES			I			1		
Method	Water	RL (m)	Graphic Log		Material Description		Samples Tests Remarks	PID Results (ppm)	Additional Observations
ADV				Dark brown loam topsoil with Strong brown silty clay, med-l Light yellowish brown silty sha	ow permeability		Sample BH9/0.2-0.3	1.1	
			2				Sample BH9/2.0	1.4	
			3				Sample BH9/3.0	2.1	
			4	Borehole BH09 terminated at	4m		Sample BH9/4.0	1.4	
BOREHOLE / TEST PIT 9528.GPJ GINT STD AUSTRALIA.GDT 29/8/16									

CLI PRO DA DA EQ	IENT OJE TE S ILLII UIPN	<u>Pri</u> CT NI STAR NG CO MENT	MAC Telep imary F JMBEF TED _ ONTRA	e 2.02 QUA phone Health R _9: 9/8/1 ACTC probe	2 Building 2, 35-41 Waterloo Road RIE PARk NSW 2113 e: 02 9889 2488 f Care 528 6 COMPLETED 10/8/16 DR Stratacore Drilling					
	Water SAL		Depth (m)	Graphic Log	Material Description		Samples Tests Remarks	PID Results (ppm)	Additional Observations	
H					Dark brown loam topsoil with organic matter Borehole BH09a terminated at 0.1m		Sample BH94/0.1			

			MACQUA	Ltd 9 Building 2, 35-41 Wa RIE PARk NSW 2113 9: 02 9889 2488			BORE	HOLI	E NUMBER BH10 PAGE 1 OF 1
			mary Health			PROJECT NAME	Phase 2 Contam	ination A	ssessment
				528		PROJECT LOCAT			
						R.L. SURFACE DATUM			ГИМ
									N. of S. substation
нс	DLES	SIZE	50mm			LOGGED BY		CHE	ECKED BY AJC
NC	DTES	;	<u> </u>				1		
Method	Water	RL (m)	Graphic Log		Material Description		Samples Tests Remarks	PID Results (ppm)	Additional Observations
ADV				Dark brown loam topsoil v Strong brown silty clay, m Light yellowish brown silty	ed-low permeability		Sample BH10/0.2-0.3		
				rığır yelowisi brown sır	y si lare		Sample BH10/1.0	2.3	
			2				Sample BH10/2.0	2.5	
			3				Sample BH10/3.0	2.3	
BOREHOLE / TEST PTT 9528.GPJ GINT STD AUSTRALIA.GDT 29/8/16			4 - - - - - - - - - - - - -	Borehole BH10 terminate	d at 4m		Sample BH10/4.0	1.5	

			MAC Telep	QUA	Ltd 2 Building 2, 35-41 Waterloo Road RIE PARk NSW 2113 9: 02 9889 2488 1 Care					
PR	OJE	CT N	UMBEF	R _9	528	PROJECT LOCAT	ION 19 Queen	Street NAF	RELLAN NSW	
					6 COMPLETED 10/8/16					
					R Stratacore Drilling					
				I					EURED BI AJU	
		;	<u> </u>							
Method	Water	RL (m)	Depth (m)	Graphic Log	Material Description		Samples Tests Remarks	PID Results (ppm)	Additional Observations	
ЧA				<u>, 17. v</u>	Dark brown loam topsoil with organic matter Borehole BH10a terminated at 0.1m		Sample	-		
							BH10a/0.1			

r

Getex Pty Ltd Suite 2.02 Building 2, 35-41 Waterloo Road MACQUARIE PARk NSW 2113 Telephone: 02 9889 2488					2 Building 2, 35-41 Waterloo Road RIE PARk NSW 2113		BORE	HOL	E NUMBER BH11 PAGE 1 OF 1		
					n Care						
					528						
					6 COMPLETED 10/8/16						
					R Stratacore Drilling						
			50mn					נח			
Method	Water	RL (m)	Depth (m)	Graphic Log	Material Description		Samples Tests Remarks	PID Results (ppm)	Additional Observations		
ADV					Dark brown loam topsoil with organic matter Strong brown silty clay, med-low permeability						
							BH11/0.2-0.3	1.8	-		
					Light yellowish brown silty shale						
			1				Sample BH11/1.0	2.5	-		
							Sample BH11/2.0	3.0	-		
			3				Sample BH11/3.0	2.5	-		
							Запріе вп 173.0	2.5			
			4						_		
					Borehole BH11 terminated at 4m		Sample BH11/4.0	3.2			
			-								
			5								
			_								
			6								
			7								
			-								
			8								
			-								
			-								

BOREHOLE / TEST PIT 9528.GPJ GINT STD AUSTRALIA.GDT 29/8/16

		ΓEX	MACQUA Telephone	Building 2, 35-41 Waterloo Road RIE PARk NSW 2113 9: 02 9889 2488	BOREHOLE NUMBER BH PAGE 1 C				
				Care					
PR	OJE	CT NI	UMBER _9	528	PROJECT LOCAT	FION 19 Queen S	Street NAR	ELLAN NSW	
DA	TE S	STAR	TED <u>9/8/1</u>	6 COMPLETED 10/8/16	R.L. SURFACE			JM	
DR	NLLI	NG C	ONTRACTO	R Stratacore Drilling	SLOPE 90°		BEAF	RING	
EQ	UIPI	MENT	Geoprobe	9	HOLE LOCATION	5.5m E. of footpa	<u>th, 2m S. c</u>	of N. carpark S. bdy	
					LOGGED BYJTL		CHEC	CKED BY _AJC	
NC	DTES	;							
Method	Water	RL (m)	Graphic Log	Material Description		Samples Tests Remarks	PID Results (ppm)	Additional Observations	
ADV				Dark brown loam topsoil with organic matter Strong brown silty clay, med-low permeability		BH12/0.2-0.3	2.1		
				Light yellowish brown silty shale		Sample BH12/1.0	2.4		
			2			Sample BH12/2.0	2.7		
			3			Sample BH12/3.0	3.3		
			4				0.7		
BOREHOLE / TEST PIT 9528.GPJ GINT STD AUSTRALIA.GDT 29/8/16				Borehole BH12 terminated at 4m		Sample BH12/4.0	2.7		

		rex	MACQUA Telephone	Building 2, 35-41 Waterloo Road RIE PARk NSW 2113 :: 02 9889 2488			E NUMBER BH13 PAGE 1 OF 1
				Care			
				528			
				6 COMPLETED <u>10/8/16</u>			
				R Stratacore Drilling			
				2			
Method	Water		Graphic Log	Material Description	Samples Tests Remarks	PID Results (ppm)	Additional Observations
ADV 1	-	(11)	() -	Dark brown loam topsoil with organic matter			
AD				Strong brown silty clay, med-low permeability	Sample BH13/0.2-0.3	1.7	
				Light yellowish brown silty shale	Sample BH13/1.0	2.0	
			2		Sample BH13/2.0	2.5	
			3		Sample BH13/3.0	2.7	
-			4	Borehole BH13 terminated at 4m	Sample BH13/4.0	2.5	
BOREHOLE / TEST PIT 9528.GPJ GINT STD AUSTRALIA.GDT 29/8/16				Borehole BH13 terminated at 4m	Sample BH13/4.0	2.5	

	267		Suit MAC	CQUA	Ltd Building 2, 35-41 Waterloo Road RIE PARk NSW 2113 9: 02 9889 2488	BOREHOLE NUMBER BH14 PAGE 1 OF 1			
					l Care	PROJECT NAME _ Phase 2 Contamination Assessment			
					528		TION 19 Queen S	Street NA	RELLAN NSW
DA	TES	STAR	TED	9/8/1	6 COMPLETED _ 10/8/16	R.L. SURFACE		DA	TUM
					R _ Stratacore Drilling				
					3				
нс	LE S	SIZE	50mr	n		_ LOGGED BY _JTL		СН	ECKED BY _AJC
NC	TES						1		
Method	Water	RL (m)	Depth (m)	Graphic Log	Material Description		Samples Tests Remarks	PID Results (ppm)	Additional Observations
ADV			_	<u>x 17: x</u>	Dark brown loam topsoil with organic matter Brownish yellow sand, high permeability				
			_				BH14/0.2-0.3	0.9	
			-						
			-		Strong brown silty clay, med-low permeability		_		
			1		5 5 5 1 5		Sample BH14/1.0	1.5	
			-	XXXXX	Light yellowish brown silty shale		-		
			-						
			2				Commis Di 11.4/2.0	10	
			-				Sample BH14/2.0	1.9	
			-						
			-						
			3						
							Sample BH14/3.0	1.8	
			_						
			-						
			4		Borehole BH14 terminated at 4m		Sample BH14/4.0	1.8	
			-						
			-						
			5						
			-						
			-						
9/8/16			-						
DT 29			6						
IA.G									
STRAL									
0 AUS									
TST			_						
l GIN			7						
8.GP,			-						
F 952,			-						
T PIT			-						
BOREHOLE / TEST PIT 9528.GPJ GINT STD AUSTRALIA.GDT 29/8/16			8						
10LE									
OREF									
۵.							1	1	

Getex Pty Ltd Suite 2.02 Building 2, 35-41 Waterloo Road MACQUARIE PARk NSW 2113 Telephone: 02 9889 2488				2 Building 2, 35-41 Waterloo Road ARIE PARk NSW 2113	BOREHOLE NUMBER BH1 PAGE 1 OF			
				h Care	PROJECT NAME Phase 2 Contamination Assessment			
PR	OJE		JMBER 9	528	PROJECT LOCAT	TION 19 Queen S	Street NA	RELLAN NSW
DA	TES	STAR	TED _ 9/8/*	16 COMPLETED 10/8/16	R.L. SURFACE		DA	тим
				OR Stratacore Drilling				
EC	UIP	MENT		e				
нс	DLES	SIZE	50mm		LOGGED BYJTL		CH	ECKED BY _AJC
NC	DTES	;		Ι			<u> </u>	
Method	Water	RL (m)	Depth Graphic Log	Material Description		Samples Tests Remarks	PID Results (ppm)	Additional Observations
ADV			<u>× //</u>	Dark brown loam topsoil with organic matter				
				Strong brown silty clay, med-low permeability		Sample BH15/0.2-0.3	1.5	
				Light yellowish brown silty shale		Sample BH15/1.0	3.8	
						Sample BH15/2.0	3.4	
						Sample BH15/3.0	3.3	
JSTRALIA.GDT 29/8/16			- - - 5 - - - - - - - - - - - - - - - -	Borehole BH15 terminated at 4m		Sample BH15/4.0	2.3	
BOREHOLE / TEST PIT 9528.GPJ GINT STD AUSTRALIA.GDT 29/8/16			- 7 - - 8 - -					

	Getex Pty Ltd Suite 2.02 Building 2, 35-41 Waterloo Road MACQUARIE PARk NSW 2113 Telephone: 02 9889 2488					BOREHOLE NUMBER BH1 PAGE 1 OF			
					Care				
					528				
					6 COMPLETED <u>10/8/16</u>				
					R <u>Stratacore Drilling</u>				
					·				
Method	Water	RL (m)		Graphic Log	Material Description		Samples Tests Remarks	PID Results (ppm)	Additional Observations
ADV					Dark brown loam topsoil with organic matter			0.5	
					Light yellowish brown silty clay, med-low permeability		Sample BH16/0.2-0.3	2.5	
					Strong brown silty clay, med-low permeability				
					Light yellowish brown silty shale, hard layer at 4.0m		Sample BH16/1.0	3.8	
			_		Light yellowish brown silty shale, hard layer at 4.0m				
			-						
			2						
							Sample BH16/2.0	3.8	
			3						
							Sample BH16/3.0	4.4	
			_						
			4						
					Borehole BH16 terminated at 4m		Sample BH16/4.0	3.9	
			-						
			5						
/8/16			_						
DT 29			6						
-IA.GI									
STRA]						
ID AU									
INT S			-						
PJ G			7						
528.G									
PIT 9									
TEST									
OLE /			8						
BOREHOLE / TEST PIT 9528.GPJ GINT STD AUSTRALIA.GDT 29/8/16									
m							1	1	

APPENDIX III

ANALYSIS RESULTS

METALS			-	Sample Number	-	9528/BH1 /1.0	9528/BH1 /3.0	-	-	-	9528/BH3 /1.0	9528/ВНЗ /4.0	9528/BH4 /0.2-0.3	-	9528/BH5 /0.2-0.3
				Sample Location	BH1	BH1	BH1	BH2	BH2	BH3	BH3	BH3	BH4	BH4	BH5
				Sample Depth from Surface (m)	0.2	1	3	0.2	2	0.2	1	4	0.2	1	0.2
		NEPM													
ANALYTE	NEPM HIL	EIL^	Units	PQL											
Arsenic	3000	160	mg/kg	4	7	13	9	13	8	15	8	6	9	11	10
Cadmium	900	-	mg/kg	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	3600	1100	mg/kg	1	20	21	12	22	11	15	17	13	21	15	3
Copper	240000	170	mg/kg	1	11	16	36	21	35	18	21	35	12	17	30
Lead	1500	1800	mg/kg	1	21	15	18	15	21	15	17	19	17	10	22
Mercury	730	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	6000	410	mg/kg	1	8	8	19	20	16	19	10	20	7	15	24
Zinc	400000	610	mg/kg	1	45	27	71	47	59	49	28	72	21	58	43

METALS				Sample Number	9528/BH5 /2.0	9528/BH5 /7.4	9528/BH6 /0.2-0.3	9528/BH6 /1.0	9528/BH7 /0.2-0.3	9528/BH7 /3.0	9528/BH8 /1.0	9528/BH8 /3.0	-	•	9528/BH1 0a/0.1
				Sample Location		ľ.		•	BH7	•	BH8	•	•	-	BH10a
				Sample Depth from Surface (m)	2	7.4	0.2	1	0.2	3	1	3	0.2	0.1	0.1
		NEPM													
ANALYTE	NEPM HIL	EIL^	Units	PQL											
Arsenic	3000	160	mg/kg	4	7	5	<4	<4	7	11	5	<4	15	6	10
Cadmium	900	-	mg/kg	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	3600	1100	mg/kg	1	12	10	10	10	21	12	14	11	18	17	15
Copper	240000	170	mg/kg	1	32	28	1	3	16	39	36	30	19	18	19
Lead	1500	1800	mg/kg	1	18	14	7	9	20	19	17	20	14	25	22
Mercury	730	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	6000	410	mg/kg	1	18	14	2	5	8	23	19	17	17	13	12
Zinc	400000	610	mg/kg	1	63	50	10	16	27	73	84	68	56	40	51

METALS				Sample Number	9528/BH1 0/2.0	1/0.2-0.3	1/2.0	2/0.2-0.3	2/3.0	3/0.2-0.3	3/1.0	3/3.0	4/0.2-0.3	4/2.0	4/4.0
				Sample Location	BH10	BH11	BH11	BH12	BH12	BH13	BH13	BH13	BH14	BH14	BH14
				Sample Depth from Surface (m)	2	0.2	2	0.2	3	0.2	1	3	0.2	2	4
		NEPM													
ANALYTE	NEPM HIL	EIL^	Units	PQL											
Arsenic	3000	160	mg/kg	4	8	8	<4	7	5	8	7	5	5	6	<4
Cadmium	900	-	mg/kg	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	3600	1100	mg/kg	1	11	16	11	18	12	16	17	13	15	13	13
Copper	240000	170	mg/kg	1	38	23	30	18	31	23	27	36	24	38	35
Lead	1500	1800	mg/kg	1	17	20	19	19	17	23	18	18	14	19	17
Mercury	730	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	6000	410	mg/kg	1	17	15	23	11	18	12	20	19	11	16	18
Zinc	400000	610	mg/kg	1	68	44	75	37	60	42	54	70	49	76	71

METALS			1	Sample Number	•	5/1.0	5/3.0	6/0.2-0.3	6/1.0	9528/BH1 6/3.0
				Sample Location	BH15	BH15	BH15	BH16	BH16	BH16
				Sample Depth from Surface (m)	0.2	1	3	0.2	1	3
		NEPM								
ANALYTE	NEPM HIL	EIL^	Units	PQL						
Arsenic	3000	160	mg/kg	4	10	8	5	6	7	<4
Cadmium	900	-	mg/kg	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	3600	1100	mg/kg	1	18	14	13	15	16	6
Copper	240000	170	mg/kg	1	15	36	38	19	21	18
Lead	1500	1800	mg/kg	1	19	18	14	15	17	24
Mercury	730	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	6000	410	mg/kg	1	9	16	18	10	10	10
Zinc	400000	610	mg/kg	1	26	53	70	37	34	48

TRH/BTEX			-									Sample Number	/0.2-0.3	/1.0		/0.2-0.3	/2.0	/0.2-0.3	/1.0
												Sample Location	BH1	BH1	BH1	BH2	BH2	BH3	BH3
Sample Depth from Surface (m)	0 to <1	1 to <2	0 to <1	1 to <2	2 to <4	>=4	0 to <1	1 to <2				Sample Depth from Surface (m)	0.2	1	. 3	0.2	2	0.2	2
Soil Type	Sand	Sand	Silt	Silt	Silt	Silt	Clay	Clay					Clay	Clay	Silt	Clay	Silt	Silt	Silt
ANALYTE	NEPM HSL		NEPM HSL	NEPM HSL	NEPM HSL	NEPM HSL	NEPM HSL	NEPM HSL	NEPM EIL^/ ESL	Supplementary Guideline Level	Units	PQL							
TRH C6 - C9	INEPIVI HSL					пэL -	H3L	IJL	ESL	Guideline Level	mg/kg	25	<25	<25	<25	<25	<25	<25	<25
TRH C6 - C10		-			-						mg/kg	25	<25	<25	<25	<25	<25	<25	<25
vTPH C6 - C10 less BTEX (F1)	- 260	370	250	- 360	- 590		310	480	215	-	mg/kg	25	<25	<25	<25	<25	<25	<25	<25
Benzene	3	3	3 4	4	6	10	4	6	75/95**	-	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	135	-	mg/kg	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	165/185**	-	mg/kg	1	<1	<1	<1	<1	<1	<1	<1
m+p-xylene	-	-	-	-	-	-	-	-	-	-	mg/kg	2	<2	<2	<2	<2	<2	<2	<2
o-Xylene	-	-	-	-	-	-	-	-	-	-	mg/kg	1	<1	<1	<1	<1	<1	<1	<1
naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	370	-	mg/kg	1	<1	<1	<1	<1	<1	<1	<1
TRH C10 - C14	-	-	-	-	-		-		-	-	mg/kg	50	<50	<50	<50	<50	<50	<50	<50
TRH C15 - C28	-	-	-	-	-	-	-	-	-	-	mg/kg	100	<100	<100	<100	<100	<100	<100	<100
TRH C29 - C36	-	-	-	-	-	-	-	-	-	-	mg/kg	100	<100	<100	<100	<100	<100	<100	<100
TRH >C10-C16	-	-	-	-	-	-	-	-	-	-	mg/kg	50	<50	<50	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	NL	NL	NL	NL	NL	NL	NL	NL	170	-	mg/kg	50	<50	<50	<50	<50	<50	<50	<50
TRH>C16-C34 (F3)	-	-	-	-	-		-		1700/2500**	27000*	mg/kg	100	<100	<100	<100	<100	<100	<100	<100
TRH>C34-C40 (F4)	-	-	-	-	-		-		3300/6600**	38000*	mg/kg	100	<100	<100	<100	<100	<100	<100	<100
Xylenes	230	NL	NL	NL	NL	NL	NL	NL	180/95	-	mg/kg	3	<3	<3	<3	<3	<3	<3	<3

^EIL levels derived from aged contaminant limits for Commercial/Industrial

TRH/BTEX		-								-		Sample Number		•	/1.0			/7.4	/0.2-0.3
												Sample Location	BH3	BH4	BH4	BH5	BH5	BH5	BH6
												Sample Depth							
Sample Depth from Surface (m)		1 to <2				>=4	0 to <1	1 to <2				from Surface (m)	4	0.2		0.2		7.4	
Soil Type	Sand	Sand	Silt	Silt	Silt	Silt	Clay	Clay					Silt	Silt	Silt	Silt	Silt	Silt	Sand
						NEPM	NEPM	NEPM	NEPM EIL^/	Supplementary									
ANALYTE	NEPM HSL	HSL	HSL	HSL	ESL	Guideline Level	Units	PQL											
TRH C6 - C9	-	-	-	-	-	-	-	-	-	-	mg/kg	25	<25	<25	<25	<25	<25	<25	<25
TRH C6 - C10	-	-	-	-	-	-	-	-	-	-	mg/kg	25	<25	<25	<25	<25	<25	<25	<25
vTPH C6 - C10 less BTEX (F1)	260	370	250	360	590	NL	310	480	215	-	mg/kg	25	<25	<25	<25	<25	<25	<25	<25
Benzene	3	3	4	4	6	10	4	6	75/95**	-	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	135	-	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	165/185**	-	mg/kg	1	<1	<1	<1	<1	<1	<1	<1
m+p-xylene	-	-	-	-	-	-	-	-	-	-	mg/kg	2	<2	<2	<2	<2	<2	<2	<2
o-Xylene	-	-	-	-	-	-	-	-	-	-	mg/kg	1	<1	<1	<1	<1	<1	<1	<1
naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	370	-	mg/kg	1	<1	<1	<1	<1	<1	<1	<1
TRH C10 - C14	-	-	-	-	-	-	-	-	-	-	mg/kg	50	<50	<50	<50	<50	<50	<50	<50
TRH C15 - C28	-	-	-	-	-	-	-	-	-	-	mg/kg	100	<100	<100	<100	<100	<100	<100	<100
TRH C29 - C36	-	-	-	-	-	-	-	-	-	-	mg/kg	100	<100	<100	<100	<100	<100	<100	<100
TRH >C10-C16	-	-	-	-	-	-	-	-	-	-	mg/kg	50	<50	<50	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	NL	NL	NL	NL	NL	NL	NL	NL	170	-	mg/kg	50	<50	<50	<50	<50	<50	<50	<50
TRH>C16-C34 (F3)	-	-	-	-	-	-	-	-	1700/2500**	27000*	mg/kg	100	<100	<100	<100	<100	<100	<100	<100
TRH>C34-C40 (F4)	-	-	-	-	-	-	-	-	3300/6600**	38000*	mg/kg	100	<100	<100	<100	<100	<100	<100	<100
Xylenes	230	NI	NL	NL	NL	NL	NL	NL	180/95	-	mg/kg	3	<3	<3	<3	<3	<3	<3	<3

^EIL levels derived from aged contaminant limits for Commercial/Industrial

TRH/BTEX												Sample Number	/1.0	/0.2-0.3	/3.0	/1.0	/3.0	/0.2-0.3	a/0.1
												Sample Location	BH6	BH7	BH7	BH8	BH8	BH9	BH9a
												Sample Depth							
Sample Depth from Surface (m)	0 to <1	1 to <2	0 to <1	1 to <2	2 to <4	>=4	0 to <1	1 to <2				from Surface (m)	1	0.2	3	1	3	3 0.2	2
Soil Type	Sand	Sand	Silt	Silt	Silt	Silt	Clay	Clay					Sand	Silt	Silt	Silt	Silt	Silt	Sand
						NEPM	NEPM	NEPM	NEPM EIL^/	Supplementary									
ANALYTE	NEPM HSL	HSL	HSL	HSL	ESL	Guideline Level	Units	PQL											
TRH C6 - C9	-	-	-	-	-	-	-	-	-	-	mg/kg	25	<25	<25	<25	<25	<25	-	-
TRH C6 - C10	-	-	-	-	-	-	-	-	-	-	mg/kg	25	<25	<25	<25	<25	<25	-	-
/TPH C6 - C10 less BTEX (F1)	260	370	250	360	590	NL NL	310	480	215	-	mg/kg	25	<25	<25	<25	<25	<25	-	-
Benzene	3		3 4	4	6	10	4	6	75/95**	-	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	135	-	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	165/185**	-	mg/kg	1	<1	<1	<1	<1	<1	-	-
m+p-xylene	-	-	-	-	-	-	-	-	-	-	mg/kg	2	<2	<2	<2	<2	<2	-	-
o-Xylene	-	-	-	-	-	-	-	-	-	-	mg/kg	1	<1	<1	<1	<1	<1	-	-
naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	370	-	mg/kg	1	<1	<1	<1	<1	<1	-	-
TRH C10 - C14	-	-	-	-	-	-	-	-	-	-	mg/kg	50	<50	<50	<50	<50	<50	-	-
TRH C15 - C28	-	-	-	-	-	-	-	-	-	-	mg/kg	100	<100	<100	<100	<100	<100	-	-
TRH C29 - C36	-	-	-	-	-	-	-	-	-	-	mg/kg	100	<100	<100	<100	<100	<100	-	-
TRH >C10-C16	-	-	-	-	-	-	-	-	-	-	mg/kg	50	<50	<50	<50	<50	<50	-	-
RH >C10 - C16 less Naphthalene (F2)	NL	NL	NL	NL	NL	NL	NL	NL	170	-	mg/kg	50	<50	<50	<50	<50	<50	-	-
RH>C16-C34 (F3)	-	-	-	-	-	-	-	-	1700/2500**	27000*	mg/kg	100	<100	<100	<100	<100	<100	-	-
rRH>C34-C40 (F4)	-	-	-	-	-	-	-	-	3300/6600**	38000*	mg/kg	100	<100	<100	<100	<100	<100	-	-
Xylenes	230	NI	NL	NL	NI	NL	NL	NI	180/95	-	mg/kg	3	<3	<3	<3	<3	<3	-	-

^EIL levels derived from aged contaminant limits for Commercial/Industrial

TRH/BTEX												Sample Number	0a/0.1		1/0.2-0.3		2/0.2-0.3		3/0.2-0.
												Sample Location	BH10a	BH10	BH11	BH11	BH12	BH12	BH13
												Sample Depth							
Sample Depth from Surface (m)		1 to <2		1 to <2		>=4		1 to <2				from Surface (m)	0.1		2 0.2		2 0.2		3 (
Soil Type	Sand	Sand	Silt	Silt	Silt	Silt	Clay	Clay					Sand	Silt	Silt	Silt	Silt	Silt	Silt
						NEPM	NEPM	NEPM		Supplementary									
ANALYTE	NEPM HSL	HSL	HSL	HSL	ESL	Guideline Level	Units	PQL											
TRH C6 - C9	-	-	-	-	-	-	-	-	-	-	mg/kg	25	-	-	-	-	-	-	<25
TRH C6 - C10	-	-	-	-	-	-	-	-	-	-	mg/kg	25	-	-	-	-	-	-	<25
vTPH C6 - C10 less BTEX (F1)	260	370	250	360	590) NL	310	480	215	-	mg/kg	25	-	-	-	-	-	-	<25
Benzene	3		8 4	4	- €	5 10	4	6	75/95**	-	mg/kg	0.2	-	-	-	-	-	-	<0.2
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	135	-	mg/kg	0.5	-	-	-	-	-	-	<0.5
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	165/185**	-	mg/kg	1	-	-	-	-	-	-	<1
m+p-xylene	-	-	-	-	-	-	-	-	-	-	mg/kg	2	-	-	-	-	-	-	<2
o-Xylene	-	-	-	-	-	-	-	-	-	-	mg/kg	1	-	-	-	-	-	-	<1
naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	370	-	mg/kg	1	-	-	-	-	-	-	<1
TRH C10 - C14	-	-	-	-	-	-	-	-	-	-	mg/kg	50	-	-	-	-	-	-	<50
TRH C15 - C28	-	-	-	-	-	-	-	-	-	-	mg/kg	100	-	-	-	-	-	-	<100
TRH C29 - C36	-	-	-	-	-	-	-	-	-	-	mg/kg	100	-	-	-	-	-	-	<100
TRH >C10-C16	-	-	-	-	-	-	-	-	-	-	mg/kg	50	-	-	-	-	-	-	<50
TRH >C10 - C16 less Naphthalene (F2)	NL	NL	NL	NL	NL	NL	NL	NL	170	-	mg/kg	50	-	-	-	-	-	-	<50
TRH>C16-C34 (F3)	-	-	-	-	-	-	-	-	1700/2500**	27000*	mg/kg	100	-	-	-	-	-	-	<100
TRH>C34-C40 (F4)	-	-	-	-	-	-	-	-	3300/6600**	38000*	mg/kg	100	-	-	-	-	-	-	<100
Xylenes	230	NI	NL	NL	NI	NL	NL	NL	180/95	-	mg/kg	3	-	-	-	-	-	-	<3

^EIL levels derived from aged contaminant limits for Commercial/Industrial

TRH/BTEX												Sample Number	3/1.0		4/0.2-0.3		4/4.0	5/0.2-0.3	
												Sample Location	BH13	BH13	BH14	BH14	BH14	BH15	BH15
												Sample Depth							
Sample Depth from Surface (m)		1 to <2		1 to <2		>=4		1 to <2				from Surface (m)	1	3	0.2		2 4	1 0.2	
Soil Type	Sand	Sand	Silt	Silt	Silt	Silt	Clay	Clay					Silt	Silt	Sand	Silt	Silt	Silt	Silt
						NEPM	NEPM	NEPM	NEPM EIL^/	Supplementary									
ANALYTE	NEPM HSL	HSL	HSL	HSL	ESL	Guideline Level	Units	PQL											
TRH C6 - C9	-	-	-	-	-	-	-	-	-	-	mg/kg	25	<25	<25	<25	<25	<25	<25	<25
TRH C6 - C10	-	-	-	-	-	-	-	-	-	-	mg/kg	25	<25	<25	<25	<25	<25	<25	<25
vTPH C6 - C10 less BTEX (F1)	260	370	250	360	590	NL	310	480	215	-	mg/kg	25	<25	<25	<25	<25	<25	<25	<25
Benzene	3		8 4	4	- €	10	4	6	75/95**	-	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	135	-	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	165/185**	-	mg/kg	1	<1	<1	<1	<1	<1	<1	<1
m+p-xylene	-	-	-	-	-	-	-	-	-	-	mg/kg	2	<2	<2	<2	<2	<2	<2	<2
o-Xylene	-	-	-	-	-	-	-	-	-	-	mg/kg	1	<1	<1	<1	<1	<1	<1	<1
naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	370	-	mg/kg	1	<1	<1	<1	<1	<1	<1	<1
TRH C10 - C14	-	-	-	-	-	-	-	-	-	-	mg/kg	50	<50	<50	<50	<50	<50	<50	<50
TRH C15 - C28	-	-	-	-	-	-	-	-	-	-	mg/kg	100	<100	<100	<100	<100	<100	<100	<100
TRH C29 - C36	-	-	-	-	-	-	-	-	-	-	mg/kg	100	<100	<100	<100	<100	<100	<100	<100
TRH >C10-C16	-	-	-	-	-	-	-	-	-	-	mg/kg	50	<50	<50	<50	<50	<50	<50	<50
RH >C10 - C16 less Naphthalene (F2)	NL	NL	NL	NL	NL	NL	NL	NL	170	-	mg/kg	50	<50	<50	<50	<50	<50	<50	<50
RH>C16-C34 (F3)	-	-	-	-	-	-	-	-	1700/2500**	27000*	mg/kg	100	<100	<100	<100	<100	<100	<100	<10
rrH>C34-C40 (F4)	-	-	-	-	-	-	-	-	3300/6600**	38000*	mg/kg	100	<100	<100	<100	<100	<100	<100	<10
Xylenes	230	NL	NL	NL	NL	NL	NL	NL	180/95	-	mg/kg	3	<3	<3	<3	<3	<3	<3	<3

^EIL levels derived from aged contaminant limits for Commercial/Industrial

TRH/BTEX	-											Sample Number		6/0.2-0.3	6/1.0	6/3.0
Sample Depth from Surface (m)	0 to <1	1 to <2	0 to <1	1 to <2	2 to <4	>=4	0 to <1	1 to <2				Sample Location Sample Depth from Surface (m)	BH15	BH16 0.2		BH16
Soil Type			Silt			Silt	Clay	Clay					Silt	Silt	Silt	Silt
ANALYTE	NEPM HSL	NEPM HSL	NEPM HSL	NEPM HSL		Supplementary Guideline Level	Units	PQL								
TRH C6 - C9	-	-	-	-	-	-	-	-	-	-	mg/kg	25	<25	<25	<25	<25
TRH C6 - C10	-	-	-	-	-	-	-	-	-	-	mg/kg	25	<25	<25	<25	<25
vTPH C6 - C10 less BTEX (F1)	260	370	250	360	590	NL	310	480	215	-	mg/kg	25	<25	<25	<25	<25
Benzene	3	3	4	4	6	10	4	6	75/95**	-	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	135	-	mg/kg	0.5	<0.5	<0.5	< 0.5	<0.5
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	165/185**	-	mg/kg	1	<1	<1	<1	<1
m+p-xylene	-	-	-	-	-	-	-	-	-	-	mg/kg	2	<2	<2	<2	<2
o-Xylene	-	-	-	-	-	-	-	-	-	-	mg/kg	1	<1	<1	<1	<1
naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	370	-	mg/kg	1	<1	<1	<1	<1
TRH C10 - C14	-	-	-	-	-	-	-	-	-	-	mg/kg	50	<50	<50	<50	<50
TRH C15 - C28	-	-	-	-	-	-	-	-	-	-	mg/kg	100	<100	<100	<100	<100
TRH C29 - C36	-	-	-	-	-	-	-	-	-	-	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16	-	-	-	-	-	-	-	-	-	-	mg/kg	50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	NL	NL	NL	NL	NL	NL	NL	NL	170	-	mg/kg	50	<50	<50	<50	<50
TRH>C16-C34 (F3)	-	-	-	-	-	-	-	-	1700/2500**	27000*	mg/kg	100	<100	<100	<100	<100
TRH>C34-C40 (F4)	-	-	-	-	-	-	-	-	3300/6600**	38000*	mg/kg	100	<100	<100	<100	<100
Xylenes	230	NL	NL	NL	NL	NL	NL	NL	180/95	-	mg/kg	3	<3	<3	<3	<3

^EIL levels derived from aged contaminant limits for Commercial/Industrial

PAHs	1					I				1	Sample Number Sample Location	/0.2-0.3	/1.0	/3.0		9528/BH2 /2.0 BH2	/0.2-0.3		/4.0	9528/BH4 /0.2-0.3 BH4	4 9528/BH /1.0 BH4
											Sample Depth	DUT	БЦТ	рці	впг	впг	впэ	впр	впр	вп4	вп4
Sample Depth from Surface (m)	0 to <1	0 to <1	1 to <2	2 to <4	>=4	0 to <1	1 to <2				from Surface (m)	0.2	1	2	0.2		0.2	1	4	0.2	,
Soil Type	Sand	Silt	Silt	Silt	-	Clav	Clay				nom sunace (m)	-		Silt		Silt	÷	-	Silt	Silt	Silt
Son Type	Suna	Sile	Sile	Silt	Sile	NEPM	NEPM		NEPM			ciuy	ciuy	Silt	ciuy	Silt	Silt	Silt	Silt	Silt	Jint
ANALYTE	NEPM HSL	HSL	HSL	NEPM HIL		Units	PQL														
Naphthalene	NL	NL	NL	NL	NL	NL	NL	-	370	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Acenaphthylene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1
Acenaphthene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
Phenanthrene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
Anthracene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
Fluoranthene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
Pyrene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
Benzo(a)anthracene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	-	-	-	-	-	-	-	-	-	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	-	-	-	-	-	-	-	-	0.7	mg/kg	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05
Indeno(1,2,3-c,d)pyrene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	-	-	-	-	-	-	-	40	-	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	-	-	-	-	-	-	-	40	-	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	-	-	-	-	-	-	-	40	-	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	-	-	-	-	-	-	-	-	-	mg/kg	-	0.12	0.13	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE	E NIL (+)VE
Total PAHs	-	-	-	-	-	-	-	4000	-	mg/kg	1.55	<1.55	<1.55	<1.55	<1.55	<1.55	<1.55	<1.55	<1.55	<1.55	<1.55

PAHs	1	1		Τ	1	1	1	T		1	Sample Number Sample Location		/2.0	/7.4	9528/BH6 /0.2-0.3 BH6	9528/BH6 /1.0 BH6	/0.2-0.3	/3.0	-	9528/BH8 /3.0 BH8	3 9528/BH9 /0.2-0.3 BH9
Sample Depth from Surface (m)	0 to <1	0 to <1	1 to <2	2 to <4	>=4	0 to <1	1 to <2				Sample Depth from Surface (m)	0.2	2	7.4	0.2	1	0.2	3	1		3 0.2
Soil Type	Sand	Silt	Silt	Silt	Silt	Clay	Clay				nom surface (m)	Silt			Sand	Sand	-	-	Silt	Silt	Silt
	ouna	0.11	Unit	0	0	NEPM	NEPM		NEPM			0.11	0.11	0.110	Jana	Jana	0	0			
ANALYTE	NEPM HSL	HSL	HSL	NEPM HIL		Units	PQL														
Naphthalene	NL	NL	NL	NL	NL	NL	NL	-	370	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	-	<0.1	-
Acenaphthylene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	-	<0.1	-
Acenaphthene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	-	<0.1	-
Fluorene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	-	<0.1	-
Phenanthrene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	1.2	<0.1	0.1	<0.1	-	<0.1	-	-	<0.1	-
Anthracene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	-	<0.1	-
Fluoranthene	-	-	-	-	-	-	-	-		mg/kg	0.1	0.1	<0.1	<0.1	<0.1	-	<0.1	-	-	<0.1	-
Pyrene	-	-	-	-	-	-	-	-		mg/kg	0.1	0.2	<0.1	<0.1	<0.1	-	<0.1	-	-	<0.1	-
Benzo(a)anthracene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	-	<0.1	-	-	<0.1	-
Chrysene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	0.3	<0.1	<0.1	<0.1	-	<0.1	-	-	<0.1	-
Benzo(b,j+k)fluoranthene	-	-	-	-	-	-	-	-	-	mg/kg	0.2	0.2	<0.2	<0.2	<0.2	-	<0.2	-	-	<0.2	-
Benzo(a)pyrene	-	-	-	-	-	-	-	-	0.7	mg/kg	0.05	0.07	<0.05	<0.05	<0.05	-	< 0.05	-	-	< 0.05	-
Indeno(1,2,3-c,d)pyrene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	-	<0.1	-
Dibenzo(a,h)anthracene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	-	<0.1	-
Benzo(g,h,i)perylene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	-	<0.1	-	-	<0.1	-
Benzo(a)pyrene TEQ calc (zero)	-	-	-	-	-	-	-	40	-	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	<0.5	-
Benzo(a)pyrene TEQ calc(half)	-	-	-	-	-	-	-	40	-	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	<0.5	-
Benzo(a)pyrene TEQ calc(PQL)	-	-	-	-	-	-	-	40	-	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	<0.5	-
Total Positive PAHs	-	-	-	-	-	-	-	-	-	mg/kg	-	2.4	NIL (+)VE	0.11	NIL (+)VE	-	NIL (+)VE	-	-	NIL (+)VE	-
Total PAHs	-	-	-	-	-	-	-	4000	-	mg/kg	1.55	<2.97	<1.55	<1.55	<1.55	-	<1.55	-	-	<1.55	-

PAHs			1	1	<u> </u>	1	1	1	[1	Sample Number Sample Location			9528/BH1 0/2.0 BH10	1/0.2-0.3		9528/BH1 2/0.2-0.3 BH12	2/3.0	3/0.2-0.3		9528/BH: 3/3.0 BH13
Sample Depth from Surface (m)	0 to <1	0 to <1	1 to <2	2 to <4	>=4	0 to <1	1 to <2				Sample Depth from Surface (m)	0.1	L 0.1		0.2	, ,	0.2		0.2	1	
Soil Type	Sand	Silt	Silt	Silt	Silt	Clay	Clay				nom our race (m)	Sand	Sand	Silt		Silt		Silt	-		Silt
						NEPM	NEPM		NEPM												
ANALYTE	NEPM HSL	HSL	HSL	NEPM HIL	EIL^/ESL	Units	PQL														
Naphthalene	NL	NL	NL	NL	NL	NL	NL	-	370	mg/kg	0.1	-	-	-	-	-	-	-	<0.1	<0.1	< 0.1
Acenaphthylene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	-	-	-	-	-	-	-	< 0.1	< 0.1	< 0.1
Acenaphthene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	-	-	-	-	-	-	-	<0.1	<0.1	< 0.1
Fluorene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	-	-	-	-	-	-	-	< 0.1	< 0.1	< 0.1
Phenanthrene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	-	-	-	-	-	-	-	< 0.1	< 0.1	< 0.1
Anthracene	-	-	-	-	-	-	-	-		mg/kg	0.1	-	-	-	-	-	-	-	<0.1	<0.1	<0.1
Fluoranthene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	-	-	-	-	-	-	-	<0.1	<0.1	< 0.1
Pyrene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	-	-	-	-	-	-	-	<0.1	< 0.1	< 0.1
Benzo(a)anthracene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	-	-	-	-	-	-	-	<0.1	<0.1	<0.1
Chrysene	-	-	-	-	-		-			mg/kg	0.1			-	-	-	-	-	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	-	-	-	-	-	-	-	-	-	mg/kg	0.2	-	-	-	-	-	-	-	<0.2	<0.2	<0.2
Benzo(a)pyrene	-	-	-	-	-	-	-	-	0.7	mg/kg	0.05	-	-	-	-	-	-	-	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-c,d)pyrene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	-	-	-	-	-	-	-	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	-	-	-	-	-	-	-	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	-	-	-	-	-	-	-	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	-	-	-	-	-	-	-	40	-	mg/kg	0.5	-	-	-	-	-	-	-	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	-	-	-	-	-	-	-	40	-	mg/kg	0.5	-	-	-	-	-	-	-	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	-	-	-	-	-	-	-	40	-	mg/kg	0.5	-	-	-	-	-	-	-	<0.5	<0.5	<0.5
Total Positive PAHs	-	-	-	-	-	-	-	-	-	mg/kg	-	-	-	-	-	-	-	-	NIL (+)VE	NIL (+)VE	NIL (+)VE
Total PAHs	-	-	-	-	-	-	-	4000	-	mg/kg	1.55	-	-	-	-	-	-	-	<1.55	<1.55	<1.55

PAHs	1	1	T	T	T	1	1	1			Sample Number Sample Location	4/0.2-0.3			9528/BH1 5/0.2-0.3 BH15	5/1.0	5/3.0	6/0.2-0.3		9528/BH1 6/3.0 BH16
											Sample Depth	DH14	BH14	BH14	вніз	вніз	внір	DHIO	внто	DHIO
Sample Depth from Surface (m)	0 to <1	0 to <1	1 to <2	2 to <4	>=4	0 to <1	1 to <2				from Surface (m)	0.2	2	4	0.2	1	3	0.2	1	
Soil Type	Sand	Silt	Silt	Silt	Silt	Clay	Clay				in on our rate (in)		_	Silt		Silt	Silt		Silt	Silt
						NEPM	NEPM		NEPM											
ANALYTE	NEPM HSL	HSL	HSL	NEPM HIL	EIL^/ESL	Units	PQL													
Naphthalene	NL	NL	NL	NL	NL	NL	NL	-	370	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
Acenaphthylene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
Acenaphthene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Fluorene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1
Phenanthrene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1
Anthracene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Pyrene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Benzo(a)anthracene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Chrysene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Benzo(b,j+k)fluoranthene	-	-	-	-	-	-	-	-	-	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	-	-	-	-	-	-	-	-	0.7	mg/kg	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Indeno(1,2,3-c,d)pyrene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Dibenzo(a,h)anthracene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	-	-	-	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	-	-	-	-	-	-	-	40	-	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	-	-	-	-	-	-	-	40	-	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	-	-	-	-	-	-	-	40	-	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	-	-	-	-	-	-	-	-	-	mg/kg	-		()	NIL (+)VE	NIL (+)VE		. ,		NIL (+)VE	
Total PAHs	-	-	-	-	-	-	-	4000	-	mg/kg	1.55	<1.55	<1.55	<1.55	<1.55	<1.55	<1.55	<1.55	<1.55	<1.55

OCP/OPP		1	T	Sample Number	/0.2-0.3	/1.0	9528/BH1 /3.0 BH1	9528/BH /0.2-0.3 BH2	2 9528/BH2 /2.0 BH2	2 9528/BH3 /0.2-0.3	9528/BH3 /1.0 BH3	9528/BH3 /4.0 BH3	9528/BH4 /0.2-0.3 BH4	9528/BH4 /1.0 BH4	9528/BH5 /0.2-0.3 BH5	9528/BH5 /2.0 BH5	9528/BH5 /7.4 BH5		9528/BH6 /1.0 BH6	9528/BH /0.2-0.3 BH7	7 9528/BH /3.0 BH7	7 9528/BH /1.0 BH8	8 9528/BH /3.0 BH8	8 9528/BH9 /0.2-0.3	9528/BH9 a/0.1 BH9a
				Sample Location Sample Depth from Surface (m)	BH1 0.2		BH1	вн <u>г</u> в 0.		BH3 2 0.2	внз	внз	вн4 0.2	вна	вн5 L 0.2		вн5 2. 7.4			вн7		вна		BH9 3 0.2	
		NEPM		from Surface (m)	0.2	1	-		<u> </u>	2 0.2	1	4	0.2		1 0.2	2 2	/.	+ 0.2		. 0.	2	5	1	5 0.2	. 0.1
ANALYTE	NEPM HIL	EIL^	Units	PQL																					
НСВ	80		mg/kg	0.1	<0.1	-	-	-	-	< 0.1	-	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	-	-
alpha-BHC	-	-	mg/kg	0.1	<0.1	-	-	-	-	<0.1	-	-	-	-	< 0.1	-	-	-	-	<0.1	-	-	-	-	-
gamma-BHC	-	-	mg/kg	0.1	<0.1	-	-	-	-	<0.1	-	-	-	-	< 0.1	-	-	-	-	<0.1	-	-	-	-	-
beta-BHC	-	-	mg/kg	0.1	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	-
Heptachlor	50	-	mg/kg	0.1	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	-
delta-BHC	-	-	mg/kg	0.1	<0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	-
Aldrin	-	-	mg/kg	0.1	<0.1	-	-	-	-	<0.1	-	-	-	-	< 0.1	-	-	-	-	<0.1	-	-	-	-	-
Heptachlor Epoxide	-	-	mg/kg	0.1	<0.1	-	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	-	-
gamma-Chlordane	-	-	mg/kg	0.1	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	0.3	-	-	-	-	-
alpha-chlordane	-	-	mg/kg	0.1	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	0.4	-	-	-	-	-
Endosulfan I	-	-	mg/kg	0.1	< 0.1	-	-	-	-	<0.1	-	-	-	-	< 0.1	-	-	-	-	<0.1	-	-	-	-	-
pp-DDE	-	-	mg/kg	0.1	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	-
Dieldrin	-	-	mg/kg	0.1	<0.1	-	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	-	-
Endrin	100	-	mg/kg	0.1	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	-
pp-DDD	-	-	mg/kg	0.1	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	-
Endosulfan II	-	-	mg/kg	0.1	< 0.1	-	-	-	-	<0.1	-	-	-	-	< 0.1	-	-	-	-	<0.1	-	-	-	-	-
pp-DDT	-	640	mg/kg	0.1	<0.1	-	-	-	-	<0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	-
Endrin Aldehyde	-	-	mg/kg	0.1	<0.1	-	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	-	-
Endosulfan Sulphate	-	-	mg/kg	0.1	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	-
Methoxychlor	2500	-	mg/kg	0.1	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	-
Azinphos-methyl (Guthion)	-	-	mg/kg	0.1	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	-
Bromophos-ethyl	-	-	mg/kg	0.1	<0.1	-	-	-	-	<0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	-
Chlorpyriphos	2000	-	mg/kg	0.1	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	-
Chlorpyriphos-methyl	-	-	mg/kg	0.1	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	-
Diazinon	-	-	mg/kg	0.1	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	-
Dichlorvos	-	-	mg/kg	0.1	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	-
Dimethoate	-	-	mg/kg	0.1	<0.1	-	-	-	-	<0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	-
Ethion	-	-	mg/kg	0.1	<0.1	-	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	-	-
Fenitrothion	-	-	mg/kg	0.1	<0.1	-	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	-	-
Malathion	-	-	mg/kg	0.1	<0.1	-	-	-	-	<0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	-
Parathion	-	-	mg/kg	0.1	<0.1	-	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	-	-
Ronnel	-	-	mg/kg	0.1	<0.1	-	-	- 1	-	<0.1	-	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	-	<u> </u>
DDT+DDE+DDD	3600	-	mg/kg	0.3	<0.3	-	-	- 1	-	<0.3	-	-	-	-	<0.3	-	-	-	-	<0.3	-	-	-	-	<u> </u>
Aldrin and Dieldrin	45	-	mg/kg	0.2	<0.2	-	-	-	-	<0.2	-	-	-	-	<0.2	-	-	-	-	<0.2	-	-	-	-	<u> </u>
Total Chlordane	530	-	mg/kg	0.2	<0.2	-	-	-	-	<0.2	-	-	-	-	<0.2	-	-	-	-	-	-	-	-	-	-
Total Endosulfan	2000	-	mg/kg	0.2	<0.2	-	-	-	-	<0.2	-	-	-	-	<0.2	-	-	-	-	<0.3	-	-	-	-	<u>+</u>
Total Endrin	100	-	mg/kg	0.2	<0.2	-	-	-	-	<0.2	-	-	-	-	<0.2	-	-	-	-	<0.2	-	-	-	-	<u>+</u>
Total Heptachlor	50	-	mg/kg	0.2	<0.2	-		-	-	<0.2	-	-	-	-	<0.2	-	-	-	-	<0.2	-		-	-	<u>+</u>

					9528/BH1			1 9528/BH1								9528/BH1		9528/BH1	9528/BH1		
OCP/OPP		1	1	Sample Number	0a/0.1	0/2.0	1/0.2-0.3			2/3.0	3/0.2-0.3		3/3.0	4/2.0		5/0.2-0.3		5/3.0			6/3.0
				Sample Location	BH10a	BH10	BH11	BH11	BH12	BH12	BH13	BH13	BH13	BH14	BH14	BH15	BH15	BH15	BH16	BH16	BH16
				Sample Depth from Surface (m)	0.1	L 2	0.2	2 2	0.2	3	0.2	2 1	. 3	2	4	0.2	1	3	0.2	1	. 3
ANALYTE	NEPM HIL	NEPM EIL^	Units	PQL																	
НСВ	80	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
alpha-BHC	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-			-		-		-	-
gamma-BHC	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
beta-BHC	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-			-		-		-	-
Heptachlor	50	-	mg/kg	0.1	-		-	-	-	-	-	-	-	-		-		-			-
delta-BHC	-		mg/kg	0.1	-			-	-		-	-	-	-	-	-	-	-	-		-
Aldrin	-	-	mg/kg	0.1	-		-	-	-	-	-	-	-	-		-	-	-		-	-
Heptachlor Epoxide	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
gamma-Chlordane	-	-	0.0	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
•	-	-	mg/kg	0.1	-			-	-		-	-	-	-	-	-			-		-
alpha-chlordane			mg/kg			-	-			-							-	-		-	
Endosulfan I	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pp-DDE	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dieldrin	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Endrin	100	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pp-DDD	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan II	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pp-DDT	-	640	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Endrin Aldehyde	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan Sulphate	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methoxychlor	2500	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Azinphos-methyl (Guthion)	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromophos-ethyl	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorpyriphos	2000	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorpyriphos-methyl	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Diazinon	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichlorvos	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dimethoate	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethion	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fenitrothion	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Malathion	-	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Parathion	-	-	mg/kg	0.1	-	-	-		-	-	-	-	-			-		-		-	-
Ronnel	-	-	mg/kg	0.1	<u> </u>	<u> </u>	<u> </u>			<u>+ -</u>		-	<u>+ -</u>	-	-	-		-	<u> </u>		-
DDT+DDE+DDD	3600	-	mg/kg	0.3			-	-	-	-	-	-	-	-		-		-		-	-
Aldrin and Dieldrin	45	-	mg/kg	0.2		-	-	-	-	-	-	-	-	-	-	-		-		-	-
Total Chlordane	530			0.2	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
		-	mg/kg											-							
Total Endosulfan	2000	-	mg/kg	0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Endrin	100	-	mg/kg	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Heptachlor	50	-	mg/kg	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

			9528/BH1	9528/BH1	9528/BH1	9528/BH2	9528/BH2	9528/BH3	9528/BH3	9528/BH3	9528/BH4	9528/BH4	9528/BH5	9528/BH5	9528/BH5	9528/BH6	
		Sample Number	/0.2-0.3	/1.0	/3.0	/0.2-0.3	/2.0	/0.2-0.3	/1.0	/4.0	/0.2-0.3	/1.0	/0.2-0.3	/2.0	/7.4	/0.2-0.3	
		Sample Location	BH1	BH1	BH1	BH2	BH2	BH3	BH3	BH3	BH4	BH4	BH5	BH5	BH5	BH6	
		Sample Depth															
		from Surface (m)	0.2	1	3	0.2	2	0.2	1	4	0.2	1	0.2	2	7.4	0.2	
NEPM HIL	Units	PQL															
-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
7	mg/kg	0.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	- - - - - -	NEPM HIL Units - mg/kg - mg/kg	Sample Location Sample Depth from Surface (m) NEPM HIL Units PQL - mg/kg 0.1 - mg/kg 0.1	Sample Number /0.2-0.3 Sample Location BH1 Sample Depth from Surface (m) 0.2 NEPM HIL Units PQL - mg/kg 0.1 - - mg/kg 0.1 -	Sample Number /0.2-0.3 /1.0 Sample Location BH1 BH1 Sample Depth from Surface (m) 0.2 1 NEPM HIL Units PQL 1 - mg/kg 0.1 - - - mg/kg 0.1 - -	Sample Number /0.2-0.3 /1.0 /3.0 Sample Location BH1 BH1 BH1 BH1 Sample Depth from Surface (m) 0.2 1 3 NEPM HIL Units PQL - - - mg/kg 0.1 - - - - mg/kg 0.1 - - -	Sample Number /0.2-0.3 /1.0 /3.0 /0.2-0.3 Sample Location BH1 BH1 BH1 BH2 Sample Depth from Surface (m) 0.2 1 3 0.2 NEPM HIL Units PQL 1 3 0.2 - mg/kg 0.1 - - - - mg/kg 0.1	Sample Number /0.2-0.3 /1.0 /3.0 /0.2-0.3 /2.0 Sample Location BH1 BH1 BH1 BH2 BH2 Sample Depth from Surface (m) 0.2 1 3 0.2 2 NEPM HIL Units PQL - - - - - - mg/kg 0.1 - - -	Sample Number /0.2-0.3 /1.0 /3.0 /0.2-0.3 /0.2-0.3 Sample Location BH1 BH1 BH1 BH2 BH2 BH3 Sample Depth from Surface (m) 0.2 1 3 0.2 2 0.2 NEPM HIL Units PQL - mg/kg 0.1 - mg/kg	Sample Number /0.2-0.3 /1.0 /3.0 /0.2-0.3 /2.0 /0.2-0.3 /1.0 Sample Location BH1 BH1 BH1 BH2 BH3 BH3 BH3 Sample Depth from Surface (m) 0.2 1 3 0.2 2 0.2 1 NEPM HIL Units PQL	Sample Number /0.2-0.3 /1.0 /3.0 /0.2-0.3 /2.0 /0.2-0.3 /1.0 /4.0 Sample Location BH1 BH1 BH1 BH2 BH2 BH3 BH3 BH3 Sample Depth from Surface (m) 0.2 1 3 0.2 2 0.2 1 4 NEPM HIL Units PQL - 4 - mg/kg 0.1	Sample Number /0.2-0.3 /1.0 /3.0 /0.2-0.3 /2.0 /0.2-0.3 /1.0 /4.0 /0.2-0.3 Image: Sample Location BH1 BH1 BH1 BH2 BH2 BH3 BH3 BH3 BH3 BH3 BH4 Sample Depth from Surface (m) 0.2 1 3 0.2 2 0.2 1 4 0.2 NEPM HIL Image: Sample Depth from Surface (m) 0.2 1 3 0.2 2 0.2 1 4 0.2 NEPM HIL Image: Sample Depth from Surface (m) 0.2 1 3 0.2 2 0.2 1 4 0.2 NEPM HIL Image: Sample Depth from Surface (m) 0.2 1 3 0.2 2 0.2 1 4 0.2 Image: Sample Depth from Surface (m) 0.2 1 3 0.2 2 0.2 1 4 0.2 Image: Sample Depth from Surface (m) 0.1 - - - - - -	Sample Number /0.2-0.3 /1.0 /3.0 /0.2-0.3 /2.0 /0.2-0.3 /1.0 /4.0 /0.2-0.3 /1.0 Image: Sample Location BH1 BH1 BH1 BH2 BH3 BH3 BH3 BH4 BH4 BH4 Sample Depth from Surface (m) 0.2 1 3 0.2 2 0.2 1 4 0.2 1 NEPM HIL Units PQL Image: Sample Depth from Surface (m) 0.2 1 3 0.2 2 0.2 1 4 0.2 1	Sample Number /0.2-0.3 /1.0 /3.0 /0.2-0.3 /2.0 /0.2-0.3 /1.0 /4.0 /0.2-0.3 /1.0 /0.2-0.3 Image: Image of the symple location BH1 BH1 BH1 BH2 BH2 BH3 BH3 BH3 BH4 BH4 BH4 BH5 Sample Depth from Surface (m) 0.2 1 3 0.2 2 0.2 1 4 0.2 1 0.2 NEPM HIL Units PQL Image: Comparison of the symple location of	Sample Number /0.2-0.3 /1.0 /3.0 /0.2-0.3 /2.0 /0.2-0.3 /1.0 /0.2 /1.0 <th 1.0<="" th=""> /1.0 /1.0<td>Image: Nerve HIL Sample Location BH1 BH1 BH2 BH2 BH3 BH3 BH3 BH4 BH4 BH5 BH5 BH5 BH5 Sample Depth from Surface (m) 0.2 1 3 0.2 2 0.2 1 4 0.2 1 0.2 7.4 NEPM HIL Units PQL </td></th>	/1.0 /1.0 <td>Image: Nerve HIL Sample Location BH1 BH1 BH2 BH2 BH3 BH3 BH3 BH4 BH4 BH5 BH5 BH5 BH5 Sample Depth from Surface (m) 0.2 1 3 0.2 2 0.2 1 4 0.2 1 0.2 7.4 NEPM HIL Units PQL </td>	Image: Nerve HIL Sample Location BH1 BH1 BH2 BH2 BH3 BH3 BH3 BH4 BH4 BH5 BH5 BH5 BH5 Sample Depth from Surface (m) 0.2 1 3 0.2 2 0.2 1 4 0.2 1 0.2 7.4 NEPM HIL Units PQL

			9528/BH6	9528/BH7	9528/BH7	9528/BH8	9528/BH8	9528/BH9	9528/BH9	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1
		Sample Number	/1.0	/0.2-0.3	/3.0	/1.0	/3.0	/0.2-0.3	a/0.1	0a/0.1	0/2.0	1/0.2-0.3	1/2.0	2/0.2-0.3	2/3.0	3/0.2-0.3
		Sample Location	BH6	BH7	BH7	BH8	BH8	BH9	BH9a	BH10a	BH10	BH11	BH11	BH12	BH12	BH13
		Sample Depth														
		from Surface (m)	1	0.2	3	1	3	0.2	0.1	0.1	2	0.2	2	0.2	3	0.2
NEPM HIL	Units	PQL														
-	mg/kg	0.1	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
-	mg/kg	0.1	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
-	mg/kg	0.1	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
-	mg/kg	0.1	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
-	mg/kg	0.1	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
-	mg/kg	0.1	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
-	mg/kg	0.1	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
7	mg/kg	0.7	-	-	-	-	-	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	-
	- - - - -	NEPM HIL Units - mg/kg - mg/kg	Sample Number Sample Location Sample Depth from Surface (m) NEPM HIL Units PQL - mg/kg 0.1 - mg/kg 0.1	Sample Number /1.0 Sample Location BH6 Sample Depth from Surface (m) 1 NEPM HIL Units PQL - mg/kg 0.1 - mg/kg 0.1	Sample Number /1.0 /0.2-0.3 Sample Location BH6 BH7 Sample Depth from Surface (m) 1 0.2 NEPM HIL Units PQL - - mg/kg 0.1 - -	Sample Number /1.0 /0.2-0.3 /3.0 Sample Location BH6 BH7 BH7 Sample Depth from Surface (m) 1 0.2 3 NEPM HIL Units PQL - - - mg/kg 0.1 - -	Sample Number /1.0 /0.2-0.3 /3.0 /1.0 Sample Location BH6 BH7 BH7 BH8 Sample Depth from Surface (m) 1 0.2 3 1 NEPM HIL Units PQL - - - - mg/kg 0.1 - - -	Sample Number /1.0 /0.2-0.3 /3.0 /1.0 /3.0 Sample Location BH6 BH7 BH7 BH8 BH8 Sample Depth from Surface (m) 1 0.2 3 1 3 NEPM HIL Units PQL - - - - - - mg/kg 0.1 - - -	Sample Number /1.0 /0.2-0.3 /3.0 /1.0 /3.0 /0.2-0.3 Sample Location BH6 BH7 BH7 BH8 BH8 BH9 Sample Depth from Surface (m) 1 0.2 3 1 3 0.2 NEPM HIL Units PQL - - - <	Sample Number /1.0 /0.2-0.3 /3.0 /1.0 /3.0 /0.2-0.3 a/0.1 Sample Location BH6 BH7 BH7 BH8 BH8 BH9 BH9a Sample Depth from Surface (m) 1 0.2 3 1 3 0.2 0.1 NEPM HIL Units PQL - - - - <0.1	Sample Number /1.0 /0.2-0.3 /3.0 /1.0 /3.0 /0.2-0.3 a/0.1 0a/0.1 Sample Location BH6 BH7 BH7 BH8 BH8 BH9 BH9a BH10a Sample Depth from Surface (m) 1 0.2 3 1 3 0.2 0.1 0.1 NEPM HIL Units PQL <	Sample Number /1.0 /0.2-0.3 /3.0 /1.0 /3.0 /0.2-0.3 a/0.1 0a/0.1 0/2.0 Sample Location BH6 BH7 BH7 BH8 BH8 BH9 BH9a BH10a BH10a	Sample Number /1.0 /0.2-0.3 /3.0 /1.0 /3.0 /0.2-0.3 a/0.1 0a/0.1 0/2.0 1/0.2-0.3 Sample Location BH6 BH7 BH7 BH8 BH8 BH9 BH9a BH10a BH10 BH10 BH11 Sample Depth from Surface (m) 1 0.2 3 1 3 0.2 0.1 0.1 2 0.2 NEPM HIL Units PQL Image: Construction of the state	Sample Number /1.0 /0.2-0.3 /3.0 /1.0 /3.0 /0.2-0.3 a/0.1 0a/0.1 0/2.0 1/0.2-0.3 1/2.0 Sample Location BH6 BH7 BH7 BH8 BH8 BH9 BH9a BH10a BH10 BH11 BH11	Sample Number /1.0 /0.2-0.3 /3.0 /1.0 /3.0 /0.2-0.3 a/0.1 0a/0.1 0/2.0 1/0.2-0.3 1/2.0 2/0.2-0.3 Sample Location BH6 BH7 BH7 BH8 BH8 BH9 BH9a BH10a BH10 BH11 BH11 BH12 Sample Depth from Surface (m) 1 0.2 3 1 3 0.2 0.1 0.1 2 0.2 2 0.2 NEPM HIL Units PQL Image: Construct of the second of	Sample Location BH6 BH7 BH8 BH8 BH9 BH9a BH10a BH10 BH11 BH11 BH12 BH12 Sample Depth from Surface (m) 1 0.2 3 1 3 0.2 0.1 0.1 2 0.2 2 0.2 3 3 NEPM HIL Units PQL - - - - < < BH9a BH10a BH10 BH11 BH12 BH12 BH12 - mg/kg 0.1 - - 3 0.2 0.1 0.1 2 0.2 2 0.2 3 - mg/kg 0.1 - - - <

				9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1
PCBs			Sample Number	3/1.0	3/3.0	4/0.2-0.3	4/2.0	4/4.0	5/0.2-0.3	5/1.0	5/3.0	6/0.2-0.3	6/1.0	6/3.0
			Sample Location	BH13	BH13	BH14	BH14	BH14	BH15	BH15	BH15	BH16	BH16	BH16
			Sample Depth											
			from Surface (m)	1	3	0.2	2	4	0.2	1	3	0.2	1	3
ANALYTE	NEPM HIL	Units	PQL											
Aroclor 1016	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1221	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1232	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1242	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1248	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1254	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1260	-	mg/kg	0.1	-	-	-	-	-	-	-	-	-	-	-
Total PCBs	7	mg/kg	0.7	-	-	-	-	-	-	-	-	-	-	-

				9528/BH1	9528/BH1	9528/BH1	9528/BH2	9528/BH2	9528/BH3	9528/BH3	9528/BH3	9528/BH4	9528/BH4	9528/BH5	9528/BH5	9528/BH5	9528/BH6
PHENOLS			Sample Number	/0.2-0.3	/1.0	/3.0	/0.2-0.3	/2.0	/0.2-0.3	/1.0	/4.0	/0.2-0.3	/1.0	/0.2-0.3	/2.0	/7.4	/0.2-0.3
			Sample Location	BH1	BH1	BH1	BH2	BH2	BH3	BH3	BH3	BH4	BH4	BH5	BH5	BH5	BH6
			Sample Depth														
			from Surface (m)	0.2	1	3	0.2	2	0.2	1	4	0.2	1	0.2	2	7.4	0.2
ANALYTE	NEPM HIL	Units	PQL														
Total Phenolics (as Phenol)	240000	mg/kg	5	-	-	-	-	-	-	-	-	<5	-	-	<5	<5	<5

				9528/BH6	9528/BH7	9528/BH7	9528/BH8	9528/BH8	9528/BH9	9528/BH9	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1
PHENOLS			Sample Number	/1.0	/0.2-0.3	/3.0	/1.0	/3.0	/0.2-0.3	a/0.1	0a/0.1	0/2.0	1/0.2-0.3	1/2.0	2/0.2-0.3	2/3.0	3/0.2-0.3
			Sample Location	BH6	BH7	BH7	BH8	BH8	BH9	BH9a	BH10a	BH10	BH11	BH11	BH12	BH12	BH13
			Sample Depth														
			from Surface (m)	1	0.2	3	1	3	0.2	0.1	0.1	2	0.2	2	0.2	3	0.2
ANALYTE	NEPM HIL	Units	PQL														
Total Phenolics (as Phenol)	240000	mg/kg	5	-	<5	-	-	-	-	-	-	-	-	-	-	-	<5

				9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1
PHENOLS			Sample Number	3/1.0	3/3.0	4/0.2-0.3	4/2.0	4/4.0	5/0.2-0.3	5/1.0	5/3.0	6/0.2-0.3	6/1.0	6/3.0
			Sample Location	BH13	BH13	BH14	BH14	BH14	BH15	BH15	BH15	BH16	BH16	BH16
			Sample Depth											
			from Surface (m)	1	3	0.2	2	4	0.2	1	3	0.2	1	3
ANALYTE	NEPM HIL	Units	PQL											
Total Phenolics (as Phenol)	240000	mg/kg	5	-	<5	<5	-	<5	<5	-	<5	<5	-	<5

						9528/BF																		H8 9528/BH8				
VOCs	1	1	1	-	Sample Number	/0.2-0.3		/3.0	/0.2-0.3	/2.0	/0.2-0.3	/1.0	/4.0	/0.2-0.3	/1.0	/0.2-0.3	/2.0	/7.4	/0.2-0.3		/0.2-0.3	/3.0	/1.0	/3.0	/0.2-0.3	a/0.1	0a/0.1	0/2.0
	_				Sample Location Sample Depth	BH1	BH1	BH1	BH2	BH2	BH3	BH3	BH3	BH4	BH4	BH5	BH5	BH5	BH6	BH6	BH7	BH7	BH8	BH8	BH9	BH9a	BH10a	BH10
Sample Depth from Surface (m)	0 to <1	1 to <2	>=4		from Surface (m)	0	.2 1	L	3 0.2	2	2 0.2		1 4	0.2	1	0.2	2	2 7.4).2	L O	.2 3		1 3	3 0.2	0.	ı o.	.1 2
Soil Type	Silt	Clay	Clay			Clay	Clay	Silt	Clay	Silt	Silt	Silt	Silt			Silt	Silt	Silt	Sand	Sand	Silt	Silt	Silt	Silt	Silt	Sand	Sand	Silt
ANALYTE	NEPM HS	L NEPM HSL	L NEPM H	ISL Units	PQL																							
Dichlorodifluoromethane	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
Chloromethane	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
Vinyl Chloride	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
Bromomethane Chloroethane	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	
Trichlorofluoromethane	-	-	-	mg/kg mg/kg	1		-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-			
1,1-Dichloroethene	-	-	-	mg/kg	1	-	-	-	-	_	-	-	-	-	-	-	<1	-	-	-	-	-	-	_	-	-	-	-
trans-1,2-dichloroethene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
1,1-dichloroethane	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-dichloroethene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
bromochloromethane	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
chloroform	-	-	-	mg/kg	1	-	-		-	-	-	-	-	-	-	-	<1	-	-	-	-		-	-	-	-	-	
2,2-dichloropropane	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
1,2-dichloroethane	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
1,1,1-trichloroethane	-	-	1	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1 <1	-	-	-	-	-	-		-	-	-	-
1,1-dichloropropene Cyclohexane		1	1.	mg/kg mg/kg	1	-	-	1	-	-	-	+ -	+ -	-	-	1	<1	-	-	+ -	-	+ -	1	-	-	-	-	+ -
carbon tetrachloride	-	-	-	mg/kg	1	-	-		-	-	-	1 -	-	-	-		<1	-	-	-	-	1 -	-	-	-	-	-	-
Benzene	0.	6 1	1	3 mg/kg	0.2	-	-	-	-	-	-	-	-	-	-	-	<0.2	-	-	-	-	-	-	-	-	-	-	-
dibromomethane	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
1,2-dichloropropane	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
trichloroethene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
bromodichloromethane	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
trans-1,3-dichloropropene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
cis-1,3-dichloropropene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
1,1,2-trichloroethane Toluene	- 20	- 0 NL	- NI	mg/kg	1 0.5	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
1,3-dichloropropane	59		INL	mg/kg mg/kg	1	-	-	-	-	-	-	-	-	-	-		<0.5	-	-	-	-	-	-	-	-	-	-	-
dibromochloromethane	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
1,2-dibromoethane	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
tetrachloroethene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
1,1,1,2-tetrachloroethane	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
chlorobenzene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	NL	NL	NL	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
bromoform	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
m+p-xylene	-	-	-	mg/kg	2	-	-	-	-	-	-	-	-	-	-	-	<2 <1	-	-	-	-	-	-	-	-	-	-	-
styrene 1,1,2,2-tetrachloroethane	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-		-	-	-	
o-Xylene	-	-	-	mg/kg mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-		1 -	-	-	-	-	+ -
1,2,3-trichloropropane	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
isopropylbenzene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
bromobenzene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
n-propyl benzene	-	-	-	mg/kg	1	-	-		-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	
2-chlorotoluene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	
4-chlorotoluene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
1,3,5-trimethyl benzene tert-butyl benzene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1 <1	-	-	-	-	-	-	-	-	-	-	-
1,2,4-trimethyl benzene	-	-	1	mg/kg mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	+ -	-	-	-	-
1,3-dichlorobenzene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-		-	-	-
sec-butyl benzene	-	-	-	mg/kg	1	-	-	-	-	-	-	- 1	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
1,4-dichlorobenzene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
4-isopropyl toluene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
1,2-dichlorobenzene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
n-butyl benzene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
1,2-dibromo-3-chloropropane	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
1,2,4-trichlorobenzene hexachlorobutadiene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	
hexachlorobutadiene 1,2,3-trichlorobenzene	-	-	-	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
1,2,3-trichlorobenzene Xylenes	- 9	5 210	- D NL	mg/kg mg/kg	3	-	-	-	-	-	-	-	-	-	-		<1 <3	-	-	-	-	+ -	-	-	-	-	-	
AVICINES	9	- <u>-</u> - 510		iiig/Kg	3			L -	1 -	1 -	L -	1 · · ·	1 -	L		1	< 3				1 -	1 -	<u> </u>	1 -	L -	1	1	

							1 9528/BH1									9528/BH1				9528/BH1	
VOCs		1		T	Sample Number Sample Location	1/0.2-0.3 BH11	BH11	2/0.2-0.3 BH12	2/3.0 BH12	3/0.2-0.3 BH13	3/1.0 BH13	3/3.0 BH13	4/0.2-0.3 BH14	4/2.0 BH14	4/4.0 BH14	5/0.2-0.3 BH15	5/1.0 BH15	5/3.0 BH15	6/0.2-0.3 BH16	6/1.0 BH16	6/3.0 BH16
					Sample Depth	DUII	DUII	DUIT	DUIT	рцтэ	рцтэ	DU12	DI14	DH14	DI14	рцтр	PU12	PU12	DU10	DU10	DUID
Sample Depth from Surface (m)	0 to <1	1 to <2	>=4		from Surface (m)	0.		0.2		0.2	1	,	0.2	,		0.2	1		0.2		
Soil Type	Silt	Clay	Clay		nom surrace (m)	Silt	Silt	Silt	Silt	Silt	Silt	Silt	Sand	Silt	Silt	Silt	Silt	Silt	Silt	Silt	Silt
Son Type	Silt	Clay	Ciay			JIL	3111	SIL	Siit	JIIL	JIIL	SIL	Janu	JIL	SIIL	JIIL	SIL	JIIL	SIIL	SIIL	JIIL
ANALYTE			NEPM HSL	Unite	PQL																
Dichlorodifluoromethane	INCE IN HOL	INEF IVI FISE		mg/kg	1					<1	-		<1	<1						<1	<1
Chloromethane	-	-	·	mg/kg	1					<1	-		<1	<1	-					<1	<1
Vinyl Chloride	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-				-	<1	<1
Bromomethane	-	-	-		1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
Chloroethane	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
	-	-	-	mg/kg	1	-	-	-	-		-	-			-	-	-	-	-		
Trichlorofluoromethane 1,1-Dichloroethene	-	-	-	mg/kg	1	-	-	-	-	<1 <1	-	-	<1 <1	<1 <1	-	-	-	-	-	<1 <1	<1 <1
	-	-	-	mg/kg	1	-	-	-	-	<1	-	-		<1	-		-	-	-		
trans-1,2-dichloroethene	-	-	-	mg/kg	1	-	-	-	-		-	-	<1		-	-	-	-	-	<1	<1
1,1-dichloroethane	-	-	-	mg/kg		-	-	-	-	<1			<1	<1			-		-	<1	<1
cis-1,2-dichloroethene	-		-	mg/kg	1	-	-		-	<1	-	-	<1	<1	-	-	-	-		<1	<1
bromochloromethane	-		-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
chloroform 2,2-dichloropropane	-		-	mg/kg mg/kg	1	-	-	-	-	<1 <1	-	-	<1 <1	<1 <1	-	-	-	-	-	<1 <1	<1 <1
1,2-dichloropropane			-		1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
			-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
1,1,1-trichloroethane 1,1-dichloropropene	-	ľ	F	mg/kg mg/kg	1	-	-	-	-	<1	-	-	<1 <1	<1 <1	-	-	-	-	-	<1 <1	<1
	-	-	-		1	-	-	-	-								-		-		
Cyclohexane	-	-	-	mg/kg	1	-	-		-	<1	-	-	<1 <1	<1 <1	-	-	-	-	-	<1 <1	<1
carbon tetrachloride	-	-	-	mg/kg		-	-	-	-	<1		-		<0.2	-	-	-	-			<1
Benzene	0.6	1	3	mg/kg	0.2	-	-	-	-	<0.2	-	-	<0.2		-	-	-		-	<0.2	<0.2
dibromomethane	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
1,2-dichloropropane	-	-	-	mg/kg	-	-	-	-	-	<1	-	-	<1	<1		-	-	-	-	<1	<1
trichloroethene	-	-	-	mg/kg	1	-	-	-	-	<1	_	_	<1	<1	-	-	-	-	-	<1	<1
bromodichloromethane	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
trans-1,3-dichloropropene	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
cis-1,3-dichloropropene	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
1,1,2-trichloroethane	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
Toluene	390	NL	NL	mg/kg	0.5	-				<0.5		-	<0.5	<0.5	-	-				<0.5	<0.5
1,3-dichloropropane	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
dibromochloromethane	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
1,2-dibromoethane	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
tetrachloroethene	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
1,1,1,2-tetrachloroethane	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
chlorobenzene	-	-	-	mg/kg	-	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
Ethylbenzene	NL	NL	NL	mg/kg	1	-	-	-	-	<1	-		<1	<1	-		-	-	-	<1	<1
bromoform	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1		-	-	-	-	<1	<1
m+p-xylene	-	-	-	mg/kg	2	-	-	-	-	<2	-	-	<2 <1	<2	-	-	-	-	-	<2 <1	<2
styrene	-	-	-	mg/kg	1					<1		-		<1			-				<1
1,1,2,2-tetrachloroethane o-Xylene	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1 <1	<1 <1	-	-	-	-	-	<1 <1	<1 <1
1,2,3-trichloropropane	-	-	-	mg/kg	1		-		-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
	-	-	-	mg/kg	-	-	-	-	-		-				-	-	-	-	-		
isopropylbenzene bromobenzene	-		-	mg/kg	1	-	-		-	<1 <1	-	-	<1 <1	<1 <1	-	-	-			<1 <1	<1 <1
	-	-	-	mg/kg		-	-	-	-		-	-			-	-	-	-	-		
n-propyl benzene 2-chlorotoluene		E	E	mg/kg	1	-	-	-	-	<1 <1	-	-	<1 <1	<1 <1	-	-	-	-	-	<1 <1	<1 <1
4-chlorotoluene	1	E		mg/kg mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
1,3,5-trimethyl benzene	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
tert-butyl benzene	-	l.	-	mg/kg	1	-	-		-	<1			<1	<1	-					<1	<1
1,2,4-trimethyl benzene	-	l.	-	mg/kg	1	-	-		-	<1			<1	<1	-					<1	<1
1,3-dichlorobenzene	-	l.	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
sec-butyl benzene	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-		-	-	-	<1	<1
1,4-dichlorobenzene	-	l.	-	mg/kg	1	-	-	-	-	<1	-		<1	<1	-			-	-	<1	<1
4-isopropyl toluene	-	l.	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-		-	-	-	<1	<1
1,2-dichlorobenzene	-	l.	-	mg/kg	1	-	-		-	<1			<1	<1	-					<1	<1
n-butyl benzene	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-		-	-	-	<1	<1
1,2-dibromo-3-chloropropane	-	-	-	mg/kg	1	-	-	- 1	-	<1	-	-	<1	<1	-	-	-	-	-	<1	<1
1,2,4-trichlorobenzene	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-		-	-	-	<1	<1
hexachlorobutadiene	-	l.	-	mg/kg	1	-	-		-	<1	-	-	<1	<1	-					<1	<1
1,2,3-trichlorobenzene	-	-	-	mg/kg	1	-	-	-	-	<1	-	-	<1	<1	-		-	-	-	<1	<1
Xylenes	95	310	NI	mg/kg	3	-	-	-	-	<3	-	-	<3	<3	-	-	-	-	-	<3	<3
represented and a second secon	33	510	1			I		1	1	- ~	-	1		~ 3		1	I				

Asbestos i	n Soil			9528/BH9/	9528/BH9a	9528/BH10	9528/BH10	9528/BH11	9528/BH11/	9528/BH12	9528/BH1
			Sample Number	1.0	/0.1	/0.2-0.3	a/0.1	/0.2-0.3	1.0	/0.2-0.3	2/1.0
			Sample Location	BH9	BH9a	BH10	BH10a	BH11	BH11	BH12	BH12
			Sample Depth from Surface (m)	1	0.1	0.2-0.3	0.1	0.2-0.3	1	0.2-0.3	1
ANALYTE	NEPM HSL	Units									
Asbestos	0.01	%		< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01

				9528/BH1	9528/BH1	9528/BH1	9528/BH2	9528/BH2	9528/BH3	9528/BH3	9528/BH3	9528/BH4	9528/BH4	9528/BH5	9528/BH5	9528/BH5	9528/BH6
Ammonia			Sample Number	-					/0.2-0.3	-	-			-	-	-	/0.2-0.3
			Sample Location	BH1	BH1	BH1	BH2	BH2	BH3	BH3	BH3	BH4	BH4	BH5	BH5	BH5	BH6
			Sample Depth														
			from Surface (m)	0.2	1	3	0.2	2	0.2	1	4	0.2	1	0.2	2	7.4	0.2
ANALYTE	HIL*	Units	PQL														
Ammonia	40) mg/kg	0.5	27	-	0.6	2.9	1	4	-	0.9	-	-	-	-	-	-

*Kansas Department of Health and Environment-Bureau of Environmental Remediation (KDHE-BER)

				9528/BH6	9528/BH7	9528/BH7	9528/BH8	9528/BH8	9528/BH9	9528/BH9	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1
Ammonia			Sample Number	/1.0	/0.2-0.3	/3.0	/1.0	/3.0	/0.2-0.3	a/0.1	0a/0.1	0/2.0	1/0.2-0.3	1/2.0	2/0.2-0.3	2/3.0	3/0.2-0.3
			Sample Location	BH6	BH7	BH7	BH8	BH8	BH9	BH9a	BH10a	BH10	BH11	BH11	BH12	BH12	BH13
			Sample Depth														
			from Surface (m)	1	0.2	3	1	3	0.2	0.1	0.1	2	0.2	2	0.2	3	0.2
ANALYTE	HIL*	Units	PQL														
Ammonia	40) mg/kg	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-

*Kansas Department of Health and Environment-Bureau of Environmenta

				9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1	9528/BH1
Ammonia			Sample Number	3/1.0	3/3.0	4/0.2-0.3	4/2.0	4/4.0	5/0.2-0.3	5/1.0	5/3.0	6/0.2-0.3	6/1.0	6/3.0
			Sample Location	BH13	BH13	BH14	BH14	BH14	BH15	BH15	BH15	BH16	BH16	BH16
			Sample Depth											
			from Surface (m)	1	3	0.2	2	4	0.2	1	3	0.2	1	3
ANALYTE	HIL*	Units	PQL											
Ammonia	40	mg/kg	0.5	-	-	-	-	-	-	-	-	-	-	-

*Kansas Department of Health and Environment-Bureau of Environmenta

Inputs
Select contaminant from list below
As
Below needed to calculate fresh and aged
ACLs
Below needed to calculate fresh and aged
ABCs
or for fresh ABCs only
or for aged ABCs only

Outputs						
Land use	Arsenic generic EILs					
	(mg contaminant	/kg dry soil)				
	Fresh	Aged				
National parks and areas of high conservation value	20	40				
Urban residential and open public spaces	50	100				
Commercial and industrial	80	160				

Inputs
Select contaminant from list below
Cr_III
Below needed to calculate fresh and aged
ACLs
Enter % clay (values from 0 to 100%)
47
47 Below needed to calculate fresh and aged
47
47 Below needed to calculate fresh and aged ABCs
47 Below needed to calculate fresh and aged ABCs Measured background concentration
47 Below needed to calculate fresh and aged ABCs
47 Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value
47 Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only
47 Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method)
47 Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate
47 Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method)
47 Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 4.8
47 Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration
47 Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 4.8 or for aged ABCs only
47 Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 4.8
47 Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 4.8 or for aged ABCs only
47 Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 4.8 or for aged ABCs only Enter State (or closest State)

low

Outputs							
Land use	Cr III soil-specific EILs						
	(mg contaminant	/kg dry soil)					
	Fresh	Aged					
National parks and areas of high conservation value	140	220					
Urban residential and open public spaces	320	670					
Commercial and industrial	500	1100					

lanute
Inputs Select contaminant from list below
Cu
Below needed to calculate fresh and aged
ACLs
Enter cation exchange capacity (silver
thiourea method) (values from 0 to 100
cmolc/kg dwt)
17
Enter soil pH (calcium chloride method)
(values from 1 to 14)
5.8
Enter organic carbon content (%OC)
(values from 0 to 50%)
0.64
Below needed to calculate fresh and aged
ABCs
Measured background concentration
(mg/kg). Leave blank if no measured value
or for fresh ABCs only Enter iron content (aqua regia method)
(values from 0 to 50%) to obtain estimate
of background concentration
4.8
or for aged ABCs only
or for aged ABCs only
or for aged ABCs only Enter State (or closest State)
Enter State (or closest State) NSW
Enter State (or closest State)

Outputs						
Land use Cu soil-specific EILs						
(mg contaminant/kg dry soil)						
	Fresh	Aged				
National parks and areas of high conservation value	45	55				
Urban residential and open public spaces	70	120				
Commercial and industrial	100	170				

Inputs
Select contaminant from list below
DDT
Below needed to calculate fresh and aged
ACLs
Below needed to calculate fresh and aged
ABCs
<i></i>
or for fresh ABCs only
or for aged ABCs only

Outputs							
Land use	DDT generic EILs						
	(mg contaminant	/kg dry soil)					
	Fresh	Aged					
National parks and areas of high conservation value	3	3					
Urban residential and open public spaces	180	180					
Commercial and industrial	640	640					

Inputs		
Select contaminant from list below		
Naphthalene		
Below needed to calculate fresh and aged		
ACLs		
Below needed to calculate fresh and aged		
ABCs		
or for fresh ABCs only		
or for aged ABCs only		

Outputs			
Land use	Naphthalene generic EILs (mg contaminant/kg dry soil)		
	Fresh	Aged	
National parks and areas of high conservation value	10	10	
Urban residential and open public spaces	170	170	
Commercial and industrial	370	370	

Inputs		
Select contaminant from list below		
Ni		
Below needed to calculate fresh and aged ACLs		
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)		
17		
Below needed to calculate fresh and aged ABCs		
Measured background concentration (mg/kg). Leave blank if no measured value		
or for fresh ABCs only		
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 4.8		
or for aged ABCs only		
Enter State (or closest State)		
NSW		
Enter traffic volume (high or low)		

low

Outputs		
Land use	Ni soil-specific EILs	
	(mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	30	45
Urban residential and open public spaces	95	240
Commercial and industrial	170	410

Inputs		
Select contaminant from list below		
Pb		
Below needed to calculate fresh and aged		
ACLs		
Below needed to calculate fresh and aged		
ABCs		
an fan faank ADOs an ke		
or for fresh ABCs only		
or for aged ABCs only		

Outputs		
Land use	Lead generic EILs (mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	110	470
Urban residential and open public spaces	270	1100
Commercial and industrial	440	1800

Inputs	
Select contaminant from list below	
Zn	
Below needed to calculate fresh and aged ACLs	
Enter cation exchange capacity (silv	er
thiourea method) (values from 0 to 1	00
cmolc/kg dwt)	
17	
Enter soil pH (calcium chloride metl	nod)
(values from 1 to 14)	· ·
5.8	
Below needed to calculate fresh and	aged
Below needed to calculate fresh and ABCs	aged
	aged
ABCs	
	n
ABCs Measured background concentration	n
ABCs Measured background concentration	n
ABCs Measured background concentration (mg/kg). Leave blank if no measured or for fresh ABCs only Enter iron content (aqua regia metho	n value od)
ABCs Measured background concentration (mg/kg). Leave blank if no measured or for fresh ABCs only Enter iron content (aqua regia metho (values from 0 to 50%) to obtain estin	n value od)
ABCs Measured background concentration (mg/kg). Leave blank if no measured or for fresh ABCs only Enter iron content (aqua regia metho	n value od)
ABCs Measured background concentration (mg/kg). Leave blank if no measured or for fresh ABCs only Enter iron content (aqua regia metho (values from 0 to 50%) to obtain estin	n value od)
ABCs Measured background concentration (mg/kg). Leave blank if no measured or for fresh ABCs only Enter iron content (aqua regia metho (values from 0 to 50%) to obtain estin of background concentration	n value od)
ABCs Measured background concentration (mg/kg). Leave blank if no measured or for fresh ABCs only Enter iron content (aqua regia metho (values from 0 to 50%) to obtain estin of background concentration 4.8	n value od)
ABCs Measured background concentration (mg/kg). Leave blank if no measured or for fresh ABCs only Enter iron content (aqua regia metho (values from 0 to 50%) to obtain estin of background concentration 4.8 or for aged ABCs only	n value od)
ABCs Measured background concentration (mg/kg). Leave blank if no measured or for fresh ABCs only Enter iron content (aqua regia metho (values from 0 to 50%) to obtain estin of background concentration 4.8 or for aged ABCs only Enter State (or closest State)	n value od)
ABCs Measured background concentration (mg/kg). Leave blank if no measured or for fresh ABCs only Enter iron content (aqua regia metho (values from 0 to 50%) to obtain estin of background concentration 4.8 or for aged ABCs only Enter State (or closest State) NSW	n value od)

Outputs			
Land use	Zn soil-specific EILs (mg contaminant/kg dry soil)		
	Fresh	Aged	
National parks and areas of high conservation value	60	150	
Urban residential and open public spaces	160	420	
Commercial and industrial	240	610	

GROUNDWATER ANALYSIS RESULTS

			Sample Number	9528/W1	9528/W2	9528/W3
			Sample Location	GW1	GW2	GW3
ANALYTE	NEPM GILs (Fresh Waters)	Units	PQL			
Arsenic	24	μg/L	1	14	9	<1
Cadmium	0.2	μg/L	0.1	<0.1	<0.1	<0.1
Chromium	1	μg/L	1	<1	<1	<1
Copper	1.4	μg/L	1	14	2	2
Lead	3.4	μg/L	1	<1	<1	<1
Mercury	0.06	μg/L	0.05	<0.05	<0.05	<0.05
Nickel	11	μg/L	1	23	7	3
Zinc	8	μg/L	1	71	26	7

				Sample			
				Number	9528/W1	9528/W2	9528/W3
				Sample			
				Location	GW1	GW2	GW3
	NEPM	NEPM					
	Ground	GILs					
	water HSLs	(Fresh					
ANALYTE	(4m-<8m)	Waters)	Units	PQL			
TRH C6 - C9	-	-	μg/L	10	<10	<10	<10
TRH C6 - C10	-	-	μg/L	10	<10	<10	<10
vTPH C6 - C10 less BTEX		-			<10	<10	<10
(F1)	NL		μg/L	10		10	10
Benzene	30,000	950	μg/L	1	<1	<1	<1
Toluene	NL	-	μg/L	1	<1	<1	<1
Ethylbenzene	NL	-	μg/L	1	<1	<1	<1
m+p-xylene	NL	200	μg/L	2	<2	<2	<2
o-Xylene	NL	350	μg/L	1	<1	<1	<1
Naphthalene	NL	16	μg/L	1	<1	<1	<1
TRH C10 - C14	-	-	μg/L	50	<50	<50	<50
TRH C15 - C28	-	-	μg/L	100	<100	<100	<100
TRH C29 - C36	-	-	μg/L	100	<100	<100	<100
TRH >C10-C16	-	-	μg/L	50	<50	<50	<50
TRH >C10 - C16 less		_			<50	<50	<50
Naphthalene (F2)	NL	-	μg/L	50			
TRH>C16-C34 (F3)	-	-	μg/L	100	<100	<100	<100
TRH>C34-C40 (F4)	-	-	μg/L	100	<100	<100	<100
Xylenes	NL	-	μg/L	3	<3	<3	<3

			Sample Number	9528/W1	9528/W2	9528/W3
			Sample Location	GW1	GW2	GW3
	NEPM					
	GILs					
	(Fresh					
ANALYTE	Waters)	Units	PQL			
Naphthalene	16	μg/L	0.2	<0.2	<0.2	<0.2
Acenaphthylene	-	μg/L	0.1	<0.1	<0.1	<0.1
Acenaphthene	-	μg/L	0.1	<0.1	<0.1	<0.1
Fluorene	-	μg/L	0.1	<0.1	<0.1	<0.1
Phenanthrene	-	μg/L	0.1	<0.1	<0.1	<0.1
Anthracene	-	μg/L	0.1	<0.1	<0.1	<0.1
Fluoranthene	-	µg/L	0.1	<0.1	<0.1	<0.1
Pyrene	-	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	-	μg/L	0.1	<0.1	<0.1	<0.1
Chrysene	-	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	-	µg/L	0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	-	µg/L	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	-	μg/L	0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	-	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	-	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	-	μg/L	0.5	<0.5	<0.5	<0.5
Total Positive PAHs	-	μg/L	-	-	-	-
Total PAHs	-	μg/L	1.7	<1.7	<1.7	<1.7

			Sample Number	9528/W1	9528/W2	9528/W3
			Sample Location	GW1	GW2	GW3
	NEPM GILs (Fresh					
ANALYTE Dichlorodifluoromethane	Waters)	Units	PQL 10	<10	<10	<10
Chloromethane	-	μg/L	10	<10	<10	<10
Vinyl Chloride	-	μg/L	10	<10	<10	<10
Bromomethane	-	μg/L	10	<10	<10	<10
Chloroethane	-	μg/L	10	<10	<10	<10
Trichlorofluoromethane	-	μg/L	10	<10	<10	<10
1,1-Dichloroethene	-	μg/L	10	<10	<10	<10
Trans-1,2-dichloroethene	-	μg/L	1	<1	<1	<1
1,1-dichloroethane	-	μg/L	1	<1	<1	<1 <1
Cis-1,2-dichloroethene	-	μg/L	1	<1	<1	<1
Bromochloromethane	-	μg/L	1	<1	<1	<1
Chloroform	-	μg/L	1	<1	<1	<1
2,2-dichloropropane	-	μg/L	1	<1	<1	<1
1,2-dichloroethane	-	μg/L	1	<1	<1	<1
1,1,1-trichloroethane	-	μg/L	1	<1	<1	<1
1,1-dichloropropene	-	μg/L	1	<1	<1	<1
Cyclohexane	-	μg/L	1	<1	<1	<1
Carbon tetrachloride	-	μg/L	1	<1	<1	
	-	μg/L	1	<1	<1	<1 <1
Benzene Dibromomethane	950	μg/L	1	<1	<1	<1 <1
	-	μg/L	1	<1	<1	<1 <1
1,2-dichloropropane Trichloroethene	-	μg/L				
	-	μg/L	1	<1	<1	<1
Bromodichloromethane	-	μg/L	1	<1	<1	<1
trans-1,3-dichloropropene	-	μg/L	1	<1	<1	<1
cis-1,3-dichloropropene	-	μg/L	1	<1	<1	<1
1,1,2-trichloroethane	-	µg/L	1	<1	<1	<1
Toluene	-	μg/L	1	<1	<1	<1
1,3-dichloropropane	-	μg/L	1	<1	<1	<1
Dibromochloromethane	-	μg/L	1	<1	<1	<1
1,2-dibromoethane	-	μg/L	1	<1	<1	<1
Tetrachloroethene	-	μg/L	1	<1	<1	<1
1,1,1,2-tetrachloroethane	-	μg/L	1	<1	<1	<1
Chlorobenzene	-	μg/L	1	<1	<1	<1
Ethylbenzene	-	μg/L	1	<1	<1	<1
Bromoform	-	μg/L	1	<1	<1	<1
m+p-xylene	200	μg/L	2	<2	<2	<2
Styrene	-	µg/L	1	<1	<1	<1
1,1,2,2-tetrachloroethane	-	µg/L	1	<1	<1	<1
o-xylene	350	μg/L	1	<1	<1	<1
1,2,3-trichloropropane	-	μg/L	1	<1	<1	<1

			Sample Number	9528/W1	9528/W2	9528/W3
			Sample Location	GW1	GW2	GW3
	NEPM					
	GILs					
	(Fresh					
ANALYTE	Waters)	Units	PQL			
Isopropylbenzene	-	μg/L	1	<1	<1	<1
Bromobenzene	-	μg/L	1	<1	<1	<1
n-propyl benzene	-	μg/L	1	<1	<1	<1
2-chlorotoluene	-	μg/L	1	<1	<1	<1
4-chlorotoluene	-	μg/L	1	<1	<1	<1
1,3,5-trimethyl benzene	-	μg/L	1	<1	<1	<1
Tert-butyl benzene	-	μg/L	1	<1	<1	<1
1,2,4-trimethyl benzene	-	μg/L	1	<1	<1	<1
1,3-dichlorobenzene	260	μg/L	1	<1	<1	<1
Sec-butyl benzene	-	μg/L	1	<1	<1	<1
1,4-dichlorobenzene	60	μg/L	1	<1	<1	<1
4-isopropyl toluene	-	μg/L	1	<1	<1	<1
1,2-dichlorobenzene	160	μg/L	1	<1	<1	<1
n-butyl benzene	-	μg/L	1	<1	<1	<1
1,2-dibromo-3-chloropropane	-	μg/L	1	<1	<1	<1
1,2,4-trichlorobenzene	85	μg/L	1	<1	<1	<1
Hexachlorobutadiene	-	μg/L	1	<1	<1	<1
1,2,3-trichlorobenzene	3	μg/L	1	<1	<1	<1

			Sample Number	9528/W1	9528/W2	9528/W3
			Sample Location	GW1	GW2	GW3
	NEPM GILs					
ANALYTE	(Fresh Waters)	Units	PQL			
Total Phenolics						
(as Phenol)	0.32	mg/L	0.05	<0.05	<0.05	<0.05

			Sample Number	9528/W1	9528/W2	9528/W3
			Sample Location	GW1	GW2	GW3
	NEPM GILs					
ANALYTE	(Fresh Waters)	Units	PQL			
Ammonia	0.9	mg/L	0.005	0.12	0.14	0.046

		Sample Number	9528/W1	9528/W2	9528/W3
		Sample Location	GW1	GW2	GW3
ANALYTE	Units	PQL			
рН	pH Units	-	7.1	7.1	7.1
Electrical Conductivity	μS/cm	1	12,000	15,000	12,000

			Sample Number	9528/WDT/W1
			Sample Location	Water Detention Tank
ANALYTE	ANZECC LoP 95% FW	Units	PQL	
Arsenic	37.0	μg/L	1	<1
Cadmium	0.2	μg/L	0.1	<0.1
Chromium	4.3*	μg/L	1	<1
Copper	1.4	μg/L	1	2
Lead	3.4	μg/L	1	<1
Mercury	0.6	µg/L	0.05	<0.05
Nickel	11.0	µg/L	1	1
Zinc	8.0	μg/L	1	4

*Value derived by combining the vale for Cr(IV) (1.0 μ g/L) from table 3.4.1 and the low reliability value for Cr(III) (3.3 μ g/L) from Section 8.3.7 of the ANZECC Guidelines

			Sample Number	9528/WDT/W1
			Sample Location	Water Detention Tank
	ANZECC			
	LoP			
	95%			
ANALYTE	FW	Units	PQL	
TRH C6 - C9	-	μg/L	10	<10
TRH C6 - C10	-	μg/L	10	<10
vTPH C6 - C10 less BTEX (F1)	-	μg/L	10	<10
Benzene	950	μg/L	1	<1
Toluene	180*	μg/L	1	<1
Ethylbenzene	80*	μg/L	1	<1
m+p-xylene	275*	μg/L	2	<2
o-Xylene	350	μg/L	1	<1
Naphthalene	16	μg/L	1	<1
TRH C10 - C14	-	μg/L	50	<50
TRH C15 - C28	-	μg/L	100	<100
TRH C29 - C36	-	μg/L	100	<100
TRH >C10-C16	-	μg/L	50	<50
TRH >C10 - C16 less Naphthalene (F2)	-	μg/L	50	<50
TRH>C16-C34 (F3)	-	μg/L	100	<100
TRH>C34-C40 (F4)	-	μg/L	100	<100
Xylenes	625*	μg/L	3	<3

*Values sourced or derived utilising low reliability or preliminary values from section 8.3.7 of the ANZECC Guidelines

			Sample Number	9528/WDT/W1
			Sample Location	Water Detention Tank
	ANZECC			
	LoP 95%			
ANALYTE	95% FW	Units	PQL	
Naphthalene	16	μg/L	0.2	<0.2
Acenaphthylene	-	μg/L	0.1	<0.1
Acenaphthene	-	μg/L	0.1	<0.1
Fluorene	-	μg/L	0.1	<0.1
Phenanthrene	-	μg/L	0.1	<0.1
Anthracene	-	μg/L	0.1	<0.1
Fluoranthene	-	µg/L	0.1	<0.1
Pyrene	-	µg/L	0.1	<0.1
Benzo(a)anthracene	-	μg/L	0.1	<0.1
Chrysene	-	μg/L	0.1	<0.1
Benzo(b,j+k)fluoranthene	-	µg/L	0.2	<0.2
Benzo(a)pyrene	-	μg/L	0.1	<0.1
Indeno(1,2,3-c,d)pyrene	-	μg/L	0.1	<0.1
Dibenzo(a,h)anthracene	-	μg/L	0.1	<0.1
Benzo(g,h,i)perylene	-	μg/L	0.1	<0.1
Benzo(a)pyrene TEQ	-	μg/L	0.5	<0.5
Total Positive PAHs	-	μg/L	-	-
Total PAHs	-	μg/L	1.7	<1.7

			Sample Number	9528/WDT/W1
			Sample Location	Water Detention Tank
	ANZECC LoP 95%	l lucitor		
ANALYTE Dichlorodifluoromethane	FW	Units	PQL 10	<10
Chloromethane	-	μg/L	10	<10
Vinyl Chloride	4000*	μg/L	10	<10
Bromomethane	100*	μg/L	10	<10
Chloroethane	-	μg/L	10	<10
Trichlorofluoromethane	-	μg/L	10	<10
	-	μg/L	10	<10
1,1-Dichloroethene	-	μg/L	1	
Trans-1,2-dichloroethene	-	μg/L	1	<1 <1
1,1-dichloroethane	90*	μg/L		
Cis-1,2-dichloroethene Bromochloromethane	-	μg/L	1	<1 <1
	-	μg/L		
Chloroform	370*	μg/L	1	<1
2,2-dichloropropane	-	μg/L	1	<1
1,2-dichloroethane	1900*	μg/L	1	<1
1,1,1-trichloroethane	270*	μg/L	1	<1
1,1-dichloropropene	-	μg/L	1	<1
Cyclohexane	-	µg/L	1	<1
Carbon tetrachloride	240*	μg/L	1	<1
Benzene	950	μg/L	1	<1
Dibromomethane	-	μg/L	1	<1
1,2-dichloropropane	900*	μg/L	1	<1
Trichloroethene	-	μg/L	1	<1
Bromodichloromethane	-	μg/L	1	<1
trans-1,3-dichloropropene	-	μg/L	1	<1
cis-1,3-dichloropropene	-	μg/L	1	<1
1,1,2-trichloroethane	6500*	μg/L	1	<1
Toluene	180*	μg/L	1	<1
1,3-dichloropropane	1100*	μg/L	1	<1
Dibromochloromethane	-	μg/L	1	<1
1,2-dibromoethane	-	μg/L	1	<1
Tetrachloroethene	-	μg/L	1	<1
1,1,1,2-tetrachloroethane	-	μg/L	1	<1
Chlorobenzene	55*	μg/L	1	<1
Ethylbenzene	80*	μg/L	1	<1
Bromoform	-	μg/L	1	<1
m+p-xylene	275*	μg/L	2	<2
Styrene	-	μg/L	1	<1
1,1,2,2-tetrachloroethane	400*	μg/L	1	<1
o-xylene	350	μg/L	1	<1
1,2,3-trichloropropane	-	μg/L	1	<1

			Sample Number	9528/WDT/W1
			Sample Location	Water Detention Tank
	ANZECC			
	LoP			
	95%			
ANALYTE	FW	Units	PQL	
Isopropylbenzene	30*	μg/L	1	<1
Bromobenzene	-	μg/L	1	<1
n-propyl benzene	-	μg/L	1	<1
2-chlorotoluene	-	μg/L	1	<1
4-chlorotoluene	-	μg/L	1	<1
1,3,5-trimethyl benzene	-	μg/L	1	<1
Tert-butyl benzene	-	μg/L	1	<1
1,2,4-trimethyl benzene	-	μg/L	1	<1
1,3-dichlorobenzene	-	μg/L	1	<1
Sec-butyl benzene	-	μg/L	1	<1
1,4-dichlorobenzene	-	μg/L	1	<1
4-isopropyl toluene	-	μg/L	1	<1
1,2-dichlorobenzene	-	μg/L	1	<1
n-butyl benzene	-	μg/L	1	<1
1,2-dibromo-3-chloropropane	-	μg/L	1	<1
1,2,4-trichlorobenzene	-	μg/L	1	<1
Hexachlorobutadiene	-	μg/L	1	<1
1,2,3-trichlorobenzene	-	μg/L	1	<1

*Values sourced or derived utilising low reliability or preliminary values from section 8.3.7 of the ANZECC Guidelines

			Sample Number	9528/WDT/W1
			Sample	Water Detention
			Location	Tank
	ANZECC LoP 95%			
ANALYTE	FW	Units	PQL	
Total Phenolics (as				
Phenol)	0.32	mg/L	0.05	<0.05

			Sample Number	9528/WDT/W1
			Sample Location	Water Detention Tank
ANALYTE	ANZECC	Units	PQL	
рН	6.5-8.5*	pH Units	-	7.3
Electrical Conductivity	125-2,200**	μS/cm	1	560

*Default trigger values for physical and chemical stressors for south-east Australia for slightly disturbed ecosystems (ANZECC 2000).

**Ranges of default trigger values for conductivity (EC, salinity), indicative of slightly disturbed ecosystems in south-east Australia (ANZECC 2000).

APPENDIX IV

LABORATORY ANALYSIS RESULTS

ASBESTOS SAMPLE ANALYSIS REPORT

Report Number:95Issue Date:17 /

9528.02.ANAT 17 August 2016

1. CLIENT DETAILS

Client:	Shellshear Young Pty Ltd
Client Contact:	Colin Young
Client Address:	203 Darling Street
	BALMAIN NSW 2041

Date Sample Received: 10 August 2016

2. SCOPE

GETEX PTY LTD was requested by Colin Young of Shellshear Young Pty Ltd to analyse eight (8) samples for asbestos content. The analysis results only relate to the samples tested.

3. METHOD

The samples were analysed under a Stereomicroscope and selected fibres were analysed by Polarised Light Microscopy in conjunction with dispersion staining method (GETEX.BSA.01, NATA accreditation number 15404). This method is based on the AS 4964 -2004 Method for the qualitative identification of asbestos in bulk samples.

NATA Accredited Laboratory. Number: 15404

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Accredited for compliance with ISO/IEC 17025

This report shall not be reproduced except in full.

Suite 2.02, Level 2, Waterloo Business Park 35 Waterloo Road, Macquarie Park NSW 2113 Phone: (02) 98892488 Fax: (02) 98892499 Email: help@getex.com.au Web: www.getex.com.au

4. RESULTS

Sample Number	Description	Analysis Result
9528/BH9/1.0	Approximate weight 114 grams. The sample consisted of light brown sandy soil with fragments of gravel.	No Asbestos Detected at Reporting Limit of 0.1g/Kg
9528/BH9a/0.1	Approximate weight 96 grams. The sample consisted of brown clayey soil with plant debris and fragments of gravel.	No Asbestos Detected at Reporting Limit of 0.1g/Kg
9528/BH10/0.2-0.3	Approximate weight 120 grams. The sample consisted of orange and grey clays with plant debris.	No Asbestos Detected at Reporting Limit of 0.1g/Kg
9528/BH10a/0.1	Approximate weight 68 grams. The sample consisted of dark brown clayey soil with plant debris.	No Asbestos Detected at Reporting Limit of 0.1g/Kg
9528/BH11/0.2-0.3	Approximate weight 177 grams. The sample consisted of brown, red and grey clays.	No Asbestos Detected at Reporting Limit of 0.1g/Kg
9528/BH11/1.0	Approximate weight 115 grams. The sample consisted of light brown clay.	No Asbestos Detected at Reporting Limit of 0.1g/Kg

NATA Accredited Laboratory. Number: 15404

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Accredited for compliance with ISO/IEC 17025

This report shall not be reproduced except in full.

Sample Number	Description	Analysis Result
9528/BH12/0.2-0.3	Approximate weight 135 grams. The sample consisted of red and grey clays.	No Asbestos Detected at Reporting Limit of 0.1g/Kg
9528/BH12/1.0	Approximate weight 121 grams. The sample consisted of brown clay.	No Asbestos Detected at Reporting Limit of 0.1g/Kg

5. LIMITATIONS

Although all work is performed to a professional and diligent standard, the potential variance between the practical limitations of the scope of work undertaken, the cost of our services, all possible issues of concern, and any loss or damages which may be associated with our work are such that we cannot warrant that all asbestos materials have been identified. We therefore limit any potential liability associated with our work to the cost of our services. Furthermore there can be no guarantee that a particular sample is typical of an extended area.

Kind Regards,

Lee Hands BSc (Hons) Approved Identifier

QA/QC check by:

Anthony Clemen

Anthony Camus B.Eng (Chem) (Hons) Approved Signatory

NATA Accredited Laboratory. Number: 15404

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Accredited for compliance with ISO/IEC 17025

This report shall not be reproduced except in full.

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

151616

Client: Getex Pty Ltd

2.02, Building 2 Waterloo Business Park 35 Waterloo Rd North Ryde NSW 2113

Attention: Justin Thompson Laing

Sample log in details:

Your Reference:	9528		
No. of samples:	15 soils		
Date samples received / completed instructions received	10/08/16	/	10/08/16

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. Please refer to the last page of this report for any comments relating to the results.

Report Details:			
Date results requested by: / Issue Date:	17/08/16	/	16/08/16
Date of Preliminary Report:	Not Issued		
NATA accreditation number 2901. This document shall no	t be reproduced e	except	in full.
Accredited for compliance with ISO/IEC 17025 - Testing	Tests n	ot cov	vered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

VOCs in soil		
Our Reference:	UNITS	151616-12
Your Reference		9528/BH5
	-	
Depth		2.0
Type of sample		soil
Date extracted	-	11/08/2016
Date analysed	-	12/08/2016
Dichlorodifluoromethane	mg/kg	<1
Chloromethane	mg/kg	<1
Vinyl Chloride	mg/kg	<1
Bromomethane	mg/kg	<1
Chloroethane	mg/kg	<1
Trichlorofluoromethane	mg/kg	<1
1,1-Dichloroethene	mg/kg	<1
trans-1,2-dichloroethene	mg/kg	<1
1,1-dichloroethane	mg/kg	<1
cis-1,2-dichloroethene	mg/kg	<1
bromochloromethane	mg/kg	<1
chloroform	mg/kg	<1
2,2-dichloropropane	mg/kg	<1
1,2-dichloroethane	mg/kg	<1
1,1,1-trichloroethane	mg/kg	<1
1,1-dichloropropene	mg/kg	<1
Cyclohexane	mg/kg	<1
carbon tetrachloride	mg/kg	<1
Benzene	mg/kg	<0.2
dibromomethane	mg/kg	<1
1,2-dichloropropane	mg/kg	<1
trichloroethene	mg/kg	<1
bromodichloromethane	mg/kg	<1
trans-1,3-dichloropropene	mg/kg	<1
cis-1,3-dichloropropene	mg/kg	<1
1,1,2-trichloroethane	mg/kg	<1
Toluene	mg/kg	<0.5
1,3-dichloropropane	mg/kg	<1
dibromochloromethane	mg/kg	<1
1,2-dibromoethane	mg/kg	<1
tetrachloroethene	mg/kg	<1
1,1,1,2-tetrachloroethane	mg/kg	<1
chlorobenzene	mg/kg	<1
Ethylbenzene	mg/kg	<1
bromoform	mg/kg	<1
m+p-xylene	mg/kg	<2
styrene	mg/kg	<1
1,1,2,2-tetrachloroethane	mg/kg	<1
o-Xylene	•••	<1
0-Aylerie	mg/kg	N

VOCs in soil		
Our Reference:	UNITS	151616-12
Your Reference		9528/BH5
Depth		2.0
Type of sample		soil
1,2,3-trichloropropane	mg/kg	<1
isopropylbenzene	mg/kg	<1
bromobenzene	mg/kg	<1
n-propyl benzene	mg/kg	<1
2-chlorotoluene	mg/kg	<1
4-chlorotoluene	mg/kg	<1
1,3,5-trimethyl benzene	mg/kg	<1
tert-butyl benzene	mg/kg	<1
1,2,4-trimethyl benzene	mg/kg	<1
1,3-dichlorobenzene	mg/kg	<1
sec-butyl benzene	mg/kg	<1
1,4-dichlorobenzene	mg/kg	<1
4-isopropyl toluene	mg/kg	<1
1,2-dichlorobenzene	mg/kg	<1
n-butyl benzene	mg/kg	<1
1,2-dibromo-3-chloropropane	mg/kg	<1
1,2,4-trichlorobenzene	mg/kg	<1
hexachlorobutadiene	mg/kg	<1
1,2,3-trichlorobenzene	mg/kg	<1
Surrogate Dibromofluorometha	%	99
Surrogate aaa-Trifluorotoluene	%	91
Surrogate Toluene-d8	%	89
Surrogate 4-Bromofluorobenzene	%	85

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	151616-1	151616-2	151616-3	151616-4	151616-5
Your Reference		9528/BH1	9528/BH1	9528/BH1	9528/BH2	9528/BH2
	-					
Depth		0.2-0.3	1.0	3.0	0.2-0.3	2.0
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	~2	~2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	100	100	99	103	104
vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	151616-6	151616-7	151616-8	151616-9	151616-10
Your Reference		9528/BH3	9528/BH3	9528/BH3	9528/BH4	9528/BH4
Depth		0.2-0.3	1.0	4.0	0.2-0.3	1.0
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	100	104	101	105	104

Client	Reference:	9

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	151616-11	151616-12	151616-13	151616-14	151616-15
Your Reference		9528/BH5	9528/BH5	9528/BH5	9528/BH6	9528/BH6
	-					
Depth		0.2-0.3	2.0	7.4	0.2-0.3	1.0
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	104	91	96	101	100

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	151616-1	151616-2	151616-3	151616-4	151616-5
Your Reference		9528/BH1	9528/BH1	9528/BH1	9528/BH2	9528/BH2
	-					
Depth		0.2-0.3	1.0	3.0	0.2-0.3	2.0
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC 29 - C 36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	122	79	79	87	79
svTRH (C10-C40) in Soil						
Our Reference:	UNITS	151616-6	151616-7	151616-8	151616-9	151616-10
Vern Defense				0500/0110		0500/0114

Our Reference: Your Reference	UNITS	151616-6 9528/BH3	151616-7 9528/BH3	151616-8 9528/BH3	151616-9 9528/BH4	151616-10 9528/BH4
Depth Type of sample		0.2-0.3 soil	1.0 soil	4.0 soil	0.2-0.3 soil	1.0 soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	79	84	82	81	83

Client Reference:	9

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	151616-11	151616-12	151616-13	151616-14	151616-15
Your Reference		9528/BH5	9528/BH5	9528/BH5	9528/BH6	9528/BH6
	-					
Depth		0.2-0.3	2.0	7.4	0.2-0.3	1.0
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	85	83	82	82	80

PAHs in Soil						
Our Reference:	UNITS	151616-1	151616-2	151616-3	151616-4	151616-5
Your Reference		9528/BH1	9528/BH1	9528/BH1	9528/BH2	9528/BH2
Depth	-	0.2-0.3	1.0	3.0	0.2-0.3	2.0
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	0.12	0.13	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	87	89	89	94	85

PAHs in Soil						
Our Reference:	UNITS	151616-6	151616-7	151616-8	151616-9	151616-10
Your Reference		9528/BH3	9528/BH3	9528/BH3	9528/BH4	9528/BH4
Depth	-	0.2-0.3	1.0	4.0	0.2-0.3	1.0
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	84	81	81	82	88

PAHs in Soil					
Our Reference:	UNITS	151616-11	151616-12	151616-13	151616-14
Your Reference		9528/BH5	9528/BH5	9528/BH5	9528/BH6
Depth	-	0.2-0.3	2.0	7.4	0.2-0.3
Type of sample		soil	soil	soil	soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	1.2	<0.1	0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.2	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.3	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.07	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	2.4	NIL(+)VE	0.11	NIL(+)VE
Surrogate p-Terphenyl-d14	%	85	88	85	86

Organochlorine Pesticides in soil				
Our Reference:	UNITS	151616-1	151616-6	151616-11
Your Reference		9528/BH1	9528/BH3	9528/BH5
Donth	-	0.2-0.3	0.2-0.3	0.2-0.3
Depth Type of sample		0.2-0.3 soil	0.2-0.3 soil	0.2-0.3 soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016	12/08/2016
HCB	mg/kg	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	92	90	89

Organophosphorus Pesticides Our Reference: Your Reference	UNITS	151616-1 9528/BH1	151616-6 9528/BH3	151616-11 9528/BH5
Depth Type of sample		0.2-0.3 soil	0.2-0.3 soil	0.2-0.3 soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016	12/08/2016
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	92	90	89

Acid Extractable metals in soil						
Our Reference:	UNITS	151616-1	151616-2	151616-3	151616-4	151616-5
Your Reference		9528/BH1	9528/BH1	9528/BH1	9528/BH2	9528/BH2
Depth		0.2-0.3	1.0	3.0	0.2-0.3	2.0
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Arsenic	mg/kg	7	13	9	13	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	20	21	12	22	11
Copper	mg/kg	11	16	36	21	35
Lead	mg/kg	21	15	18	15	21
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	8	8	19	20	16
Zinc	mg/kg	45	27	71	47	59
Acid Extractable metals in soil Our Reference:	UNITS	154040 0	154040 7	151010 0	151010 0	154040 40
Our Reference: Your Reference	UNITS	151616-6 9528/BH3	151616-7 9528/BH3	151616-8 9528/BH3	151616-9 9528/BH4	151616-10 9528/BH4
	-	9320/DI 13	9520/DI 15	9320/DI 13	9020/DI 14	9320/Bi 14
Depth		0.2-0.3	1.0	4.0	0.2-0.3	1.0
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Arsenic	mg/kg	15	8	6	9	11
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	15	17	13	21	15
Copper	mg/kg	18	21	35	12	17
Lead	mg/kg	15	17	19	17	10
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	19	10	20	7	15
Zinc	mg/kg	49	28	72	21	58
A sid Estre stable matche in a sil	1					1
Acid Extractable metals in soil Our Reference:	UNITS	151616-11	151616-12	151616-13	151616-14	151616-15
Your Reference		9528/BH5	9528/BH5	9528/BH5	9528/BH6	9528/BH6
	-					
Depth		0.2-0.3	2.0	7.4	0.2-0.3	1.0
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Arsenic	mg/kg	10	7	5	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	3	12	10	10	10
Copper	mg/kg	30	32	28	1	3
Lead	mg/kg	22	18	14	7	9
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	24	18	14	2	5
Zinc	mg/kg	43	63	50	10	16

Moisture						
Our Reference:	UNITS	151616-1	151616-2	151616-3	151616-4	151616-5
Your Reference		9528/BH1	9528/BH1	9528/BH1	9528/BH2	9528/BH2
	-					
Depth		0.2-0.3	1.0	3.0	0.2-0.3	2.0
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
Moisture	%	15	19	13	19	7.9
Moisture		454040.0	454040 7	454040.0	454040.0	454040.40
Our Reference: Your Reference	UNITS	151616-6 9528/BH3	151616-7 9528/BH3	151616-8 9528/BH3	151616-9 9528/BH4	151616-10 9528/BH4
Your Reference		9528/BH3	9528/BH3	9528/BH3	9528/BH4	9528/884
Depth		0.2-0.3	1.0	4.0	0.2-0.3	1.0
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
Moisture	%	15	19	11	16	15
Moisture						
Our Reference:	UNITS	151616-11	151616-12	151616-13	151616-14	151616-15
Your Reference	01113	9528/BH5	9528/BH5	9528/BH5	9528/BH6	9528/BH6
	-	5520/Di 15	3320/DI 13	3320/0113	5520/Di 10	5520/Di 10
Depth		0.2-0.3	2.0	7.4	0.2-0.3	1.0
Type of sample		soil	soil	soil	soil	soil
,, ,						
Date prepared	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
	-	11/08/2016 12/08/2016	11/08/2016 12/08/2016	11/08/2016 12/08/2016	11/08/2016 12/08/2016	11/08/2016 12/08/2016

Misc Soil - Inorg					
Our Reference:	UNITS	151616-9	151616-12	151616-13	151616-14
Your Reference		9528/BH4	9528/BH5	9528/BH5	9528/BH6
	-				
Depth		0.2-0.3	2.0	7.4	0.2-0.3
Type of sample		soil	soil	soil	soil
Date prepared	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5

Misc Inorg - Soil Our Reference: Your Reference	UNITS	151616-1 9528/BH1	151616-3 9528/BH1	151616-4 9528/BH2	151616-5 9528/BH2	151616-6 9528/BH3
Depth Type of sample		0.2-0.3 soil	3.0 soil	0.2-0.3 soil	2.0 soil	0.2-0.3 soil
Date prepared Date analysed	-	12/08/2016 12/08/2016	12/08/2016 12/08/2016	12/08/2016 12/08/2016	12/08/2016 12/08/2016	12/08/2016 12/08/2016
Ammonia as N in soil	mg/kg	27	0.6	2.9	1	4.0

Misc Inorg - Soil		
Our Reference:	UNITS	151616-8
Your Reference		9528/BH3
	-	
Depth		4.0
Type of sample		soil
Type of sample Date prepared	-	soil 12/08/2016
	-	

-	9528
-	3 5 20

MethodID	Methodology Summary
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:- 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" are="" at="" is="" pql.="" the="" the<br="" this="">most conservative approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present.</pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" pql.<br="" stipulated="" the="">Hence a mid-point between the most and least conservative approaches above.</pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Soils are analysed following a KCI extraction.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
VOCs in soil						Base II Duplicate II % RPD		
Date extracted	-			11/08/2 016	[NT]	[NT]	LCS-2	11/08/2016
Date analysed	-			12/08/2 016	[NT]	[NT]	LCS-2	12/08/2016
Dichlorodifluoromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Chloromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Bromomethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Chloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
trans-1,2-dichloroethene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,1-dichloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-2	77%
cis-1,2-dichloroethene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
bromochloromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
chloroform	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-2	80%
2,2-dichloropropane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-2	79%
1,1,1-trichloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-2	111%
1,1-dichloropropene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Cyclohexane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
carbon tetrachloride	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Benzene	mg/kg	0.2	Org-014	<0.2	[NT]	[NT]	[NR]	[NR]
dibromomethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichloropropane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
trichloroethene	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-2	80%
bromodichloromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-2	88%
trans-1,3- dichloropropene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
cis-1,3-dichloropropene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Toluene	mg/kg	0.5	Org-014	<0.5	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
dibromochloromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-2	89%
1,2-dibromoethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
tetrachloroethene	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-2	78%
1,1,1,2- tetrachloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
chlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
bromoform	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
m+p-xylene	mg/kg	2	Org-014	~2	[NT]	[NT]	[NR]	[NR]
styrene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,1,2,2- tetrachloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
o-Xylene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2,3-trichloropropane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]

		-	ent Reference		528			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in soil						Base II Duplicate II % RPD		-
isopropylbenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
bromobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
tert-butyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
sec-butyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	1	Org-014	<1	[NT]	[TN]	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
hexachlorobutadiene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> Dibromofluorometha	%		Org-014	103	[NT]	[NT]	LCS-2	86%
Surrogate aaa- Trifluorotoluene	%		Org-014	102	[NT]	[NT]	LCS-2	78%
Surrogate Toluene-d8	%		Org-014	91	[NT]	[NT]	LCS-2	85%
Surrogate 4- Bromofluorobenzene	%		Org-014	86	[NT]	[TN]	LCS-2	106%

		-	ent Reference		528		0 1 0 "	0 1 0/
QUALITY CONTROL /TRH(C6-C10)/BTEXN in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Date extracted	-			11/08/2	151616-1	11/08/2016 11/08/2016	LCS-4	11/08/2016
Date analysed	-			016 12/08/2	151616-1	12/08/2016 12/08/2016	LCS-4	12/08/2016
	ma/ka	25	Org-016	016 <25	151616-1	~25 11 ~25	LCS-4	91%
TRHC6 - C9	mg/kg		Ű			<25 <25		
TRHC6 - C10	mg/kg	25	Org-016	<25	151616-1	<25 <25	LCS-4	91%
Benzene	mg/kg	0.2	Org-016	<0.2	151616-1	<0.2 <0.2	LCS-4	88%
Toluene	mg/kg	0.5	Org-016	<0.5	151616-1	<0.5 <0.5	LCS-4	87%
Ethylbenzene	mg/kg	1	Org-016	<1	151616-1	<1 <1	LCS-4	93%
m+p-xylene	mg/kg	2	Org-016	2	151616-1	<2 <2	LCS-4	94%
o-Xylene	mg/kg	1	Org-016	<1	151616-1	<1 <1	LCS-4	94%
naphthalene	mg/kg	1	Org-014	<1	151616-1	<1 <1	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	92	151616-1	100 99 RPD:1	LCS-4	87%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
svTRH (C10-C40) in Soil					Sm#	Sm# Base II Duplicate II %RPD		Recovery
Date extracted	-			11/08/2 016	151616-1	11/08/2016 11/08/2016	LCS-4	11/08/2016
Date analysed	-			11/08/2 016	151616-1	11/08/2016 11/08/2016	LCS-4	11/08/2016
TRHC 10 - C 14	mg/kg	50	Org-003	<50	151616-1	<50 <50	LCS-4	130%
TRHC 15 - C28	mg/kg	100	Org-003	<100	151616-1	<100 <100	LCS-4	130%
TRHC29 - C36	mg/kg	100	Org-003	<100	151616-1	<100 <100	LCS-4	119%
TRH>C10-C16	mg/kg	50	Org-003	<50	151616-1	<50 <50	LCS-4	130%
TRH>C16-C34	mg/kg	100	Org-003	<100	151616-1	<100 <100	LCS-4	130%
TRH>C34-C40	mg/kg	100	Org-003	<100	151616-1	<100 <100	LCS-4	119%
	%	100	Org-003	96	151616-1	122 80 RPD:42	LCS-4	116%
	UNITS	PQL	-	Blank		Duplicate results	Spike Sm#	Spike %
QUALITY CONTROL	UNITS	PQL	METHOD	DIANK	Duplicate Sm#	Base II Duplicate II % RPD	Spike Sm#	Recovery
Date extracted	-			11/08/2	151616-1	11/08/2016 11/08/2016	LCS-4	11/08/2016
Date analysed	-			016 11/08/2 016	151616-1	11/08/2016 11/08/2016	LCS-4	11/08/2016
Naphthalene	mg/kg	0.1	Org-012	<016 <0.1	151616-1	<0.1 <0.1	LCS-4	112%
Acenaphthylene	mg/kg	0.1	Org-012 Org-012	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 Org-012	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
Fluorene			-					
	mg/kg	0.1	Org-012	<0.1	151616-1	<0.1 <0.1	LCS-4	128%
Phenanthrene	mg/kg	0.1	Org-012	<0.1	151616-1	0.1 < 0.1	LCS-4	118%
Anthracene	mg/kg	0.1	Org-012	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	151616-1	<0.1 <0.1	LCS-4	100%
Pyrene	mg/kg	0.1	Org-012	<0.1	151616-1	<0.1 <0.1	LCS-4	107%
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012	<0.1	151616-1	<0.1 <0.1	LCS-4	103%
Benzo(b,j +k)fluoranthene	mg/kg	0.2	Org-012	<0.2	151616-1	<0.2 <0.2	[NR]	[NR]

			ent Reference		528		0 1 0 1	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		recovery
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	151616-1	<0.05 <0.05	LCS-4	110%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	93	151616-1	87 84 RPD:4	LCS-4	109%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II %RPD		
Date extracted	-			11/08/2 016	151616-1	11/08/2016 11/08/2016	LCS-4	11/08/2016
Date analysed	-			12/08/2 016	151616-1	11/08/2016 11/08/2016	LCS-4	12/08/2016
HCB	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	LCS-4	101%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	LCS-4	104%
Heptachlor	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	LCS-4	101%
delta-BHC	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	LCS-4	107%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	LCS-4	107%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
Endosulfanl	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	LCS-4	107%
Dieldrin	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	LCS-4	108%
Endrin	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	LCS-4	113%
pp-DDD	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	LCS-4	106%
EndosulfanII	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	LCS-4	88%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-005	93	151616-1	92 93 RPD:1	LCS-4	113%

		Clie	ent Referenc	e: 95	528			
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II % RPD		
Date extracted	-			11/08/2 016	151616-1	11/08/2016 11/08/2016	LCS-4	11/08/2016
Date analysed	-			12/08/2 016	151616-1	11/08/2016 11/08/2016	LCS-4	12/08/2016
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	151616-1	<0.1 <0.1	LCS-4	90%
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-008	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	151616-1	<0.1 <0.1	LCS-4	115%
Dimethoate	mg/kg	0.1	Org-008	<0.1	151616-1	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	151616-1	<0.1 <0.1	LCS-4	93%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	151616-1	<0.1 <0.1	LCS-4	106%
Malathion	mg/kg	0.1	Org-008	<0.1	151616-1	<0.1 <0.1	LCS-4	78%
Parathion	mg/kg	0.1	Org-008	<0.1	151616-1	<0.1 <0.1	LCS-4	109%
Ronnel	mg/kg	0.1	Org-008	<0.1	151616-1	<0.1 <0.1	LCS-4	96%
Surrogate TCMX	%		Org-008	93	151616-1	92 93 RPD:1	LCS-4	93%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Date prepared	-			11/08/2 016	151616-1	11/08/2016 11/08/2016	LCS-4	11/08/2016
Date analysed	-			11/08/2 016	151616-1	11/08/2016 11/08/2016	LCS-4	11/08/2016
Arsenic	mg/kg	4	Metals-020	<4	151616-1	7 9 RPD:25	LCS-4	111%
Cadmium	mg/kg	0.4	Metals-020	<0.4	151616-1	<0.4 <0.4	LCS-4	98%
Chromium	mg/kg	1	Metals-020	<1	151616-1	20 22 RPD:10	LCS-4	105%
Copper	mg/kg	1	Metals-020	<1	151616-1	11 13 RPD:17	LCS-4	104%
Lead	mg/kg	1	Metals-020	<1	151616-1	21 25 RPD: 17	LCS-4	102%
Mercury	mg/kg	0.1	Metals-021	<0.1	151616-1	<0.1 <0.1	LCS-4	101%
Nickel	mg/kg	1	Metals-020	<1	151616-1	8 10 RPD:22	LCS-4	100%
Zinc	mg/kg	1	Metals-020	<1	151616-1	45 68 RPD:41	LCS-4	103%

			Clie	nt Referend	ce: 95	28
QUALITYCONTROL	UNITS	PQ	L	METHOD	Blank	
Misc Soil - Inorg						
Date prepared	-				11/08/2 016	
Date analysed	-				11/08/2 016	
Total Phenolics (as Phenol)	mg/kg		5	Inorg-031	⊲5	
QUALITY CONTROL Misc Inorg - Soil	UNITS	PQ	L	METHOD	Blank	
Date prepared	-				12/08/2 016	
Date analysed	-				12/08/2 016	
Ammonia as N in soil	mg/kg		0.5	Inorg-057	<0.5	
QUALITY CONTROL vTRH(C6-C10)/BTEXN in Soil	UNITS	5	[Dup.Sm#		Duplicate Duplicate + %RPD
Date extracted	-		1	51616-14	11/08/2	016 11/08/2016
Date analysed	-		1	51616-14		
TRHC6 - C9	mg/kg	9	1	51616-14	<25 <25	
TRHC6 - C10	mg/kg	3	1	51616-14		<25 <25
Benzene	mg/kę	9	1	51616-14	<	<0.2 <0.2
Toluene	mg/kę	9	1	51616-14	<	<0.5 <0.5
Ethylbenzene	mg/kę	9	1	51616-14		<1 <1
m+p-xylene	mg/kę	9	1	51616-14		<2 <2
o-Xylene	mg/kę	3	1	51616-14		<1 <1
naphthalene	mg/kę	3	1	51616-14		<1 <1
Surrogate aaa- Trifluorotoluene	%		1	51616-14	101	102 RPD:1
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	3	[Dup.Sm#		Duplicate Duplicate + %RPD
Date extracted	-		1	51616-14	11/08/2	016 11/08/2016
Date analysed	-		1	51616-14	11/08/2	016 11/08/2016
TRHC 10 - C 14	mg/kg	9	1	51616-14		<50 <50
TRHC 15 - C28	mg/kg	9	1	51616-14	<	100 <100
TRHC29 - C36	mg/kg	9	1	51616-14	<	100 <100
TRH>C10-C16	mg/kg	9	1	51616-14		<50 <50
TRH>C16-C34	mg/kg	9	1	51616-14	<	100 <100
TRH>C34-C40	mg/kę	9	1	51616-14	<	100 <100
Surrogate o-Terphenyl	%		1	51616-14	82	80 RPD:2

		Client Referenc	e: 9528
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate
PAHs in Soil			Base + Duplicate + %RPD
Date extracted	-	151616-14	11/08/2016 11/08/2016
Date analysed	-	151616-14	11/08/2016 11/08/2016
Naphthalene	mg/kg	151616-14	<0.1 <0.1
Acenaphthylene	mg/kg	151616-14	<0.1 <0.1
Acenaphthene	mg/kg	151616-14	<0.1 <0.1
Fluorene	mg/kg	151616-14	<0.1 <0.1
Phenanthrene	mg/kg	151616-14	<0.1 <0.1
Anthracene	mg/kg	151616-14	<0.1 <0.1
Fluoranthene	mg/kg	151616-14	<0.1 <0.1
Pyrene	mg/kg	151616-14	<0.1 <0.1
Benzo(a)anthracene	mg/kg	151616-14	<0.1 <0.1
Chrysene	mg/kg	151616-14	<0.1 <0.1
Benzo(b,j+k)fluoranthene	mg/kg	151616-14	<0.2 <0.2
Benzo(a)pyrene	mg/kg	151616-14	<0.05 <0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	151616-14	<0.1 <0.1
Dibenzo(a,h)anthracene	mg/kg	151616-14	<0.1 <0.1
Benzo(g,h,i)perylene	mg/kg	151616-14	<0.1 <0.1
Surrogate p-Terphenyl-d14	%	151616-14	86 84 RPD:2
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate
Acid Extractable metals in soil			Base + Duplicate + %RPD
Date prepared	-	151616-14	11/08/2016 11/08/2016
Date analysed	-	151616-14	11/08/2016 11/08/2016
Arsenic	mg/kg	151616-14	<4 <4
Cadmium	mg/kg	151616-14	<0.4 <0.4
Chromium	mg/kg	151616-14	10 10 RPD:0
Copper	mg/kg	151616-14	1 1 RPD:0
Lead	mg/kg	151616-14	7 7 RPD:0
Mercury	mg/kg	151616-14	<0.1 <0.1
Nickel	mg/kg	151616-14	2 2 RPD:0
Zinc	mg/kg	151616-14	10 10 RPD:0

		Client Referenc	e: 9528		
QUALITY CONTROL Misc Soil - Inorg	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	LCS-1	11/08/2016
Date analysed	-	[NT]	[NT]	LCS-1	11/08/2016
Total Phenolics (as Phenol)	mg/kg	[NT]	[NT]	LCS-1	105%
QUALITY CONTROL Misc Inorg - Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	LCS-1	12/08/2016
Date analysed	-	[NT]	[NT]	LCS-1	12/08/2016
Ammonia as N in soil	mg/kg	[NT]	[NT]	LCS-1	105%
QUALITYCONTROL vTRH(C6-C10)/BTEXNin Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	151616-6	11/08/2016
Date analysed	-	[NT]	[NT]	151616-6	12/08/2016
TRHC6 - C9	mg/kg	[NT]	[NT]	151616-6	96%
TRHC6 - C10	mg/kg	[NT]	[NT]	151616-6	96%
Benzene	mg/kg	[NT]	[NT]	151616-6	93%
Toluene	mg/kg	[NT]	[NT]	151616-6	94%
Ethylbenzene	mg/kg	[NT]	[NT]	151616-6	97%
m+p-xylene	mg/kg	[NT]	[NT]	151616-6	98%
o-Xylene	mg/kg	[NT]	[NT]	151616-6	98%
naphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%	[NT]	[NT]	151616-6	97%
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	151616-6	11/08/2016
Date analysed	-	[NT]	[NT]	151616-6	11/08/2016
TRHC 10 - C14	mg/kg	[NT]	[NT]	151616-6	127%
TRHC 15 - C28	mg/kg	[NT]	[NT]	151616-6	114%
TRHC29 - C36	mg/kg	[NT]	[NT]	151616-6	108%
TRH>C10-C16	mg/kg	[NT]	[NT]	151616-6	127%
TRH>C16-C34	mg/kg	[NT]	[NT]	151616-6	114%
TRH>C34-C40	mg/kg	[NT]	[NT]	151616-6	108%
Surrogate o-Terphenyl	%	[NT]	[NT]	151616-6	89%

Client Reference: 9528									
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery				
PAHs in Soil			Base + Duplicate + %RPD						
Date extracted	-	[NT]	[NT]	151616-6	11/08/2016				
Date analysed	-	[NT]	[NT]	151616-6	11/08/2016				
Naphthalene	mg/kg	[NT]	[NT]	151616-6	110%				
Acenaphthylene	mg/kg	[NT]	[NT]	[NR]	[NR]				
Acenaphthene	mg/kg	[NT]	[NT]	[NR]	[NR]				
Fluorene	mg/kg	[NT]	[NT]	151616-6	123%				
Phenanthrene	mg/kg	[NT]	[NT]	151616-6	118%				
Anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]				
Fluoranthene	mg/kg	[NT]	[NT]	151616-6	99%				
Pyrene	mg/kg	[NT]	[NT]	151616-6	107%				
Benzo(a)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]				
Chrysene	mg/kg	[NT]	[NT]	151616-6	103%				
Benzo(b,j+k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]				
Benzo(a)pyrene	mg/kg	[NT]	[NT]	151616-6	109%				
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]				
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]				
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]				
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	151616-6	99%				
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery				
Organochlorine Pesticides			Base + Duplicate + %RPD						
in soil									
Date extracted	-	[NT]	[NT]	151616-6	11/08/2016				
Date analysed	-	[NT]	[NT]	151616-6	11/08/2016				
HCB	mg/kg	[NT]	[NT]	[NR]	[NR]				
alpha-BHC	mg/kg	[NT]	[NT]	151616-6	99%				
gamma-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]				
beta-BHC	mg/kg	[NT]	[NT]	151616-6	99%				
Heptachlor	mg/kg	[NT]	[NT]	151616-6	98%				
delta-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]				
Aldrin	mg/kg	[NT]	[NT]	151616-6	103%				
Heptachlor Epoxide	mg/kg	[NT]	[NT]	151616-6	102%				
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]				
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]				
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]				
pp-DDE	mg/kg	[NT]	[NT]	151616-6	103%				
Dieldrin	mg/kg	[NT]	[NT]	151616-6	104%				
Endrin	mg/kg	[NT]	[NT]	151616-6	110%				
pp-DDD	mg/kg	[NT]	[NT]	151616-6	103%				
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]				
pp-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]				
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]				
Endosulfan Sulphate	mg/kg	[NT]	[NT]	151616-6	92%				

		Client Referenc	e: 9528		
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%	[NT]	[NT]	151616-6	102%
QUALITY CONTROL Organophosphorus Pesticides	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	151616-6	11/08/2016
Date analysed	-	[NT]	[NT]	151616-6	11/08/2016
Azinphos-methyl (Guthion)	mg/kg	[NT]	[NT]	[NR]	[NR]
Bromophos-ethyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	[NT]	[NT]	151616-6	86%
Chlorpyriphos-methyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Diazinon	mg/kg	[NT]	[NT]	[NR]	[NR]
Dichlorvos	mg/kg	[NT]	[NT]	151616-6	115%
Dimethoate	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	[NT]	[NT]	151616-6	91%
Fenitrothion	mg/kg	[NT]	[NT]	151616-6	97%
Malathion	mg/kg	[NT]	[NT]	151616-6	67%
Parathion	mg/kg	[NT]	[NT]	151616-6	122%
Ronnel	mg/kg	[NT]	[NT]	151616-6	94%
Surrogate TCMX	%	[NT]	[NT]	151616-6	91%
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	151616-6	11/08/2016
Date analysed	-	[NT]	[NT]	151616-6	11/08/2016
Arsenic	mg/kg	[NT]	[NT]	151616-6	84%
Cadmium	mg/kg	[NT]	[NT]	151616-6	85%
Chromium	mg/kg	[NT]	[NT]	151616-6	91%
Copper	mg/kg	[NT]	[NT]	151616-6	89%
Lead	mg/kg	[NT]	[NT]	151616-6	77%
Mercury	mg/kg	[NT]	[NT]	151616-6	99%
Nickel	mg/kg	[NT]	[NT]	151616-6	76%
Zinc	mg/kg	[NT]	[NT]	151616-6	81%

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Getex Pty Ltd
Attention	Justin Thompson Laing

Sample Login Details	
Your Reference	9528
Envirolab Reference	151616
Date Sample Received	10/08/2016
Date Instructions Received	10/08/2016
Date Results Expected to be Reported	17/08/2016

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	15 soils
Turnaround Time Requested	Standard
Temperature on receipt (°C)	2.8
Cooling Method	Ice
Sampling Date Provided	YES

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au

Sample and Testing Details on following page

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	VOCs in soil	vTRH(C6- C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides	Acid Extractable metals in soil	Total Phenolics (as Phenol)	Ammonia as N in soil
9528/BH1-0.2-0.3		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
9528/BH1-1.0		\checkmark	\checkmark	\checkmark			\checkmark		
9528/BH1-3.0		\checkmark	\checkmark	\checkmark			\checkmark		\checkmark
9528/BH2-0.2-0.3		\checkmark	\checkmark	\checkmark			\checkmark		\checkmark
9528/BH2-2.0		\checkmark	\checkmark	\checkmark			\checkmark		\checkmark
9528/BH3-0.2-0.3		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
9528/BH3-1.0		\checkmark	\checkmark	\checkmark			\checkmark		
9528/BH3-4.0		\checkmark	\checkmark	\checkmark			\checkmark		\checkmark
9528/BH4-0.2-0.3		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	
9528/BH4-1.0		\checkmark	\checkmark	\checkmark			\checkmark		
9528/BH5-0.2-0.3		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
9528/BH5-2.0	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	
9528/BH5-7.4		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	
9528/BH6-0.2-0.3		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	
9528/BH6-1.0		\checkmark	\checkmark				\checkmark		

GETE	Address: Phone: Facsimile: Email:	Getex Pty Ltd 2.02, Building 3 35 Waterloo R MACQUARIE P (02) 9889 2488 (02) 9889 2499 help@getex.cc Justin Thomps	oad ARK 3 9 0m.a	au Lain	SW 2	211	3					bie	ent T	F	P acs	dre hor	ro: ss: : ne:	Env 12 / CH/ (02)	irol Ashl ATSV 99 99	ab ley WC 10	Serv Stre DOD 620 629	vice eet NS 0 9	es F	20	67	Jol Dat Tim Rec Ten Coc	oling	eceiveceiveceiveceiveceiveceiveceivecei	ved: ved: Ann Ace	Ph: 6/ 18 bien pack Brok	(02) 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		hley N 20 0 62	Si 67 00 Ord roje		Num	nber nber TAT	r: 5 r: 9 ſ: 5	751 528 day	rs	/0		8/1	16	18 - 7	2:50
			1	_				_																					21															_		
- 1 T.		Container								Singl	e An	naly	tes						-	Т				S	oil		-		Со	mbos	and	Non	-Star	ndar	d An	alyte	es		<u> </u>		-				-	
Envirolab Barcode Number	Getex Sample Number	Plastic Tube – PT Bag – B Petri Dish – PD Plastic Bottle – PB Glass Jar – GJ Glass Bottle – GB Glass Vial - GV	TRH/BTEX	PAH Routine	PAH Low	OCP	DPP	CB		ls	~			TCLP Prep	eachable PAH	6 Leachable Metals	Ammonia	OCs			NEPM Soil Char Suite		Combination 3	Combination 4	Combination 5b																					
1	9528/BH1/0.2-0.3	GJ		-	-			-	-	4			4	-	-	9	1	2	+	+	2	1		-	1	+	+	+	\vdash			+	+	+	+	+	+	+	+	1		\top	+	+	1	
2	9528/BH1/1.0	GJ		-	\neg	+	+	+	+	+	+	+	+	+		+	+	+	+	+		+	1	+	+			+				+	+	+	+	+	+	+			\square	$ \uparrow $	+	+		
3	9528/BH1/3.0	GJ		1	\top	+	+	+	+	+	+	+	+	+		1	1	+	+	┫		$^{+}$	1	+	+	+	+	+				+	+	+	+	+	+	-	-	+	\square	\vdash	+	+		
4	9528/BH2/0.2-0.3	GJ				+	+	1	+	+	+	+	1	+		+	1	+	+	+		$^{+}$	1	+	+	+	+	+	\vdash			+	+	+	+	+	+	+	+	\vdash			+	-		
5	9528/BH2/2.0	GJ							+	1	+		-	1		1	1	+	+	+	+	\dagger	1	+	+	+	+	+				1	+	+	+	+	+	1	+		\square	\neg	+	+		
6	9528/BH3/0.2-0.3	GJ			1		1		1	+	+	1	1	+		1	1		+	1		\dagger	+		1	+	+	\top				1		+	+	+	+	+			\square	\neg	+	+		
7	9528/BH3/1.0	GJ				1	1	1				1				1	1	1		1		1	1	1	1	\top	T	T				1		\top	\top	+	\top	\uparrow				\top	1			
8	9528/BH3/4.0	GJ					1					1					1	1		1		T	1									1		1	1	T	T	T				\square	+	+	1	
9	9528/BH4/0.2-0.3	GJ		1	\top						T						1	1		1		T		1			T									T	T					\neg	+	+		
(0)	9528/BH4/1.0	GJ																				T	1																							
11	9528/BH5/0.2-0.3	GJ																							1																					
12	9528/BH5/2.0 🔨	GJ																1						1																						
13	9528/BH5/7.4	GJ																2						1																						
14	9528/BH6/0.2-0.3	GJ																						1																						
15	9528/BH6/1.0	GJ																			1																									
		Total										T					6	1		I	1		7	4	3																					

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

151617

Client: Getex Pty Ltd

2.02, Building 2 Waterloo Business Park35 Waterloo RdNorth RydeNSW 2113

Attention: Justin Thompson-Laing

Sample log in details:

Your Reference:	9528		
No. of samples:	16 Soils		
Date samples received / completed instructions received	10/08/16	/	10/08/16

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:			
Date results requested by: / Issue Date:	17/08/16	/	17/08/16
Date of Preliminary Report:	Not Issued		
NATA accreditation number 2901. This document shall no	t be reproduced ex	cept i	in full.
Accredited for compliance with ISO/IEC 17025 - Testing	Tests no	t cov	ered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

VOCs in soil		
Our Reference:	UNITS	151617-13
Your Reference		9528/BH13
	-	
Depth		0.2-0.3
Type of sample		Soil
Date extracted	-	12/08/2016
Date analysed	-	12/08/2016
Dichlorodifluoromethane	mg/kg	<1
Chloromethane	mg/kg	<1
Vinyl Chloride	mg/kg	<1
Bromomethane	mg/kg	<1
Chloroethane	mg/kg	<1
Trichlorofluoromethane	mg/kg	<1
1,1-Dichloroethene	mg/kg	<1
trans-1,2-dichloroethene	mg/kg	<1
1,1-dichloroethane	mg/kg	<1
cis-1,2-dichloroethene	mg/kg	<1
bromochloromethane	mg/kg	<1
chloroform	mg/kg	<1
2,2-dichloropropane	mg/kg	<1
1,2-dichloroethane	mg/kg	<1
1,1,1-trichloroethane	mg/kg	<1
1,1-dichloropropene	mg/kg	<1
Cyclohexane	mg/kg	<1
carbon tetrachloride	mg/kg	<1
Benzene	mg/kg	<0.2
dibromomethane	mg/kg	<1
1,2-dichloropropane	mg/kg	<1
trichloroethene	mg/kg	<1
bromodichloromethane		<1
trans-1,3-dichloropropene	mg/kg mg/kg	<1
cis-1,3-dichloropropene	mg/kg	<1
	mg/kg	<1
1,1,2-trichloroethane Toluene	00	<0.5
	mg/kg	
1,3-dichloropropane	mg/kg	<1
dibromochloromethane	mg/kg	<1
1,2-dibromoethane	mg/kg	<1
tetrachloroethene	mg/kg	<1
1,1,1,2-tetrachloroethane	mg/kg	<1
chlorobenzene	mg/kg	<1
Ethylbenzene	mg/kg	<1
bromoform	mg/kg	<1
m+p-xylene	mg/kg	<2
styrene	mg/kg	<1
1,1,2,2-tetrachloroethane	mg/kg	<1
o-Xylene	mg/kg	<1

Envirolab Reference:	151617
Revision No:	R 00

VOCs in soil		
Our Reference:	UNITS	151617-13
Your Reference		9528/BH13
	-	
Depth		0.2-0.3
Type of sample		Soil
1,2,3-trichloropropane	mg/kg	<1
isopropylbenzene	mg/kg	<1
bromobenzene	mg/kg	<1
n-propyl benzene	mg/kg	<1
2-chlorotoluene	mg/kg	<1
4-chlorotoluene	mg/kg	<1
1,3,5-trimethyl benzene	mg/kg	<1
tert-butyl benzene	mg/kg	<1
1,2,4-trimethyl benzene	mg/kg	<1
1,3-dichlorobenzene	mg/kg	<1
sec-butyl benzene	mg/kg	<1
1,4-dichlorobenzene	mg/kg	<1
4-isopropyl toluene	mg/kg	<1
1,2-dichlorobenzene	mg/kg	<1
n-butyl benzene	mg/kg	<1
1,2-dibromo-3-chloropropane	mg/kg	<1
1,2,4-trichlorobenzene	mg/kg	<1
hexachlorobutadiene	mg/kg	<1
1,2,3-trichlorobenzene	mg/kg	<1
Surrogate Dibromofluorometha	%	91
Surrogate aaa-Trifluorotoluene	%	109
Surrogate Toluene-da	%	79
Surrogate 4-Bromofluorobenzene	%	97

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	151617-1	151617-2	151617-3	151617-4	151617-13
Your Reference		9528/BH7	9528/BH7	9528/BH8	9528/BH8	9528/BH13
	-					
Depth		0.2-0.3	3.0	1.0	3.0	0.2-0.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	15/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
Date analysed	-	16/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	87	123	136	118	109

vTRH(C6-C10)/BTEXN in Soil			
Our Reference:	UNITS	151617-14	151617-15
Your Reference		9528/BH13	9528/BH13
	-		
Depth		1.0	3.0
Type of sample		Soil	Soil
Date extracted	-	12/08/2016	12/08/2016
Date analysed	-	12/08/2016	12/08/2016
TRHC6 - C9	mg/kg	<25	<25
TRHC6 - C10	mg/kg	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
naphthalene	mg/kg	<1	<1
Surrogate aaa-Trifluorotoluene	%	111	117

svTRH (C10-C40) in Soil Our Reference: Your Reference	UNITS	151617-1 9528/BH7	151617-2 9528/BH7	151617-3 9528/BH8	151617-4 9528/BH8	151617-13 9528/BH13
Depth Type of sample		0.2-0.3 Soil	3.0 Soil	1.0 Soil	3.0 Soil	0.2-0.3 Soil
Date extracted	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	123	84	82	83	84

svTRH (C10-C40) in Soil			
Our Reference:	UNITS	151617-14	151617-15
Your Reference		9528/BH13	9528/BH13
	-		
Depth		1.0	3.0
Type of sample		Soil	Soil
Date extracted	-	12/08/2016	12/08/2016
Date analysed	-	12/08/2016	12/08/2016
TRHC 10 - C14	mg/kg	<50	<50
TRHC 15 - C28	mg/kg	<100	<100
TRHC29 - C36	mg/kg	<100	<100
TRH>C10-C16	mg/kg	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH>C16-C34	mg/kg	<100	<100
TRH>C34-C40	mg/kg	<100	<100
Surrogate o-Terphenyl	%	83	83

PAHs in Soil						
Our Reference:	UNITS	151617-1	151617-4	151617-13	151617-14	151617-15
Your Reference		9528/BH7	9528/BH8	9528/BH13	9528/BH13	9528/BH13
Depth	-	0.2-0.3	3.0	0.2-0.3	1.0	3.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	100	98	93	98	98

Organochlorine Pesticides in soil		
Our Reference:	UNITS	151617-1
Your Reference		9528/BH7
Depth	-	0.2-0.3
Type of sample		Soil
Date extracted	-	12/08/2016
Date analysed	-	12/08/2016
HCB	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	0.3
alpha-chlordane	mg/kg	0.4
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Surrogate TCMX	%	92

Organophosphorus Pesticides		
Our Reference:	UNITS	151617-1
Your Reference		9528/BH7
	-	
Depth		0.2-0.3
Type of sample		Soil
Date extracted	-	12/08/2016
Date analysed	-	12/08/2016
Azinphos-methyl (Guthion)	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Ethion	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Parathion	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Surrogate TCMX	%	92

PCBs in Soil						
Our Reference:	UNITS	151617-5	151617-6	151617-7	151617-8	151617-9
Your Reference		9528/BH9	9528/BH9a	9528/BH10a	9528/BH10	9528/BH11
	-					
Depth		0.2-0.3	0.1	0.1	2.0	0.2-0.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	91	95	91	92	91

PCBs in Soil				
Our Reference:	UNITS	151617-10	151617-11	151617-12
Your Reference		9528/BH11	9528/BH12	9528/BH12
	-			
Depth		2.0	0.2-0.3	3.0
Type of sample		Soil	Soil	Soil
Date extracted	-	12/08/2016	12/08/2016	12/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Surrogate TCLMX	%	92	91	92

Acid Extractable metals in soil						
Our Reference:	UNITS	151617-1	151617-2	151617-3	151617-4	151617-5
Your Reference		9528/BH7	9528/BH7	9528/BH8	9528/BH8	9528/BH9
	-					
Depth		0.2-0.3	3.0	1.0	3.0	0.2-0.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
Arsenic	mg/kg	7	11	5	<4	15
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	21	12	14	11	18
Copper	mg/kg	16	39	36	30	19
Lead	mg/kg	20	19	17	20	14
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	8	23	19	17	17
Zinc	mg/kg	27	73	84	68	56
Iron	mg/kg	48,000	[NA]	[NA]	[NA]	[NA]

Acid Extractable metals in soil						
Our Reference:	UNITS	151617-6	151617-7	151617-8	151617-9	151617-10
Your Reference		9528/BH9a	9528/BH10a	9528/BH10	9528/BH11	9528/BH11
	-					
Depth		0.1	0.1	2.0	0.2-0.3	2.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
Arsenic	mg/kg	6	10	8	8	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	17	15	11	16	11
Copper	mg/kg	18	19	38	23	30
Lead	mg/kg	25	22	17	20	19
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	13	12	17	15	23
Zinc	mg/kg	40	51	68	44	75

Client Reference:	9
-------------------	---

Acid Extractable metals in soil						
Our Reference:	UNITS	151617-11	151617-12	151617-13	151617-14	151617-15
Your Reference		9528/BH12	9528/BH12	9528/BH13	9528/BH13	9528/BH13
	-					
Depth		0.2-0.3	3.0	0.2-0.3	1.0	3.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
Arsenic	mg/kg	7	5	8	7	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	18	12	16	17	13
Copper	mg/kg	18	31	23	27	36
Lead	mg/kg	19	17	23	18	18
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	11	18	12	20	19
Zinc	mg/kg	37	60	42	54	70

Misc Soil - Inorg Our Reference:	UNITS	151617-1	151617-13	151617-15
Your Reference	01113	9528/BH7	9528/BH13	9528/BH13
	-	3320/DI II	5520/DITT5	3320/BITTS
Depth		0.2-0.3	0.2-0.3	3.0
Type of sample		Soil	Soil	Soil
Date prepared	-	12/08/2016	12/08/2016	12/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5

Moisture Our Reference:	UNITS	151617-1	151617-2	151617-3	151617-4	151617-5
Your Reference	UNITS	9528/BH7	9528/BH7	9528/BH8	9528/BH8	9528/BH9
four Reference		9520/007	9520/007	9020/000	9020/DN0	9020/009
Depth		0.2-0.3	3.0	1.0	3.0	0.2-0.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	_	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
	-					
Date analysed	-	15/08/2016	15/08/2016	15/08/2016	15/08/2016	15/08/2016
Moisture	%	18	9.6	14	8.8	16
Moisture		454047.0		454047.0		454047.40
Our Reference:	UNITS	151617-6	151617-7	151617-8	151617-9	151617-10
Your Reference		9528/BH9a	9528/BH10a	9528/BH10	9528/BH11	9528/BH11
Depth		0.1	0.1	2.0	0.2-0.3	2.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
Date analysed	-	15/08/2016	15/08/2016	15/08/2016	15/08/2016	15/08/2016
Moisture	%	23	18	7.0	19	8.7
Moisture						
Our Reference:	UNITS	151617-11	151617-12	151617-13	151617-14	151617-15
Your Reference		9528/BH12	9528/BH12	9528/BH13	9528/BH13	9528/BH13
Donth	-	0000	2.0	0000	1.0	2.0
Depth		0.2-0.3	3.0 Coll	0.2-0.3	1.0 Coll	3.0 Seil
Turne of commune		Soil	Soil	Soil	Soil	Soil
Type of sample						
Type of sample Date prepared	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
	-	12/08/2016 15/08/2016	12/08/2016 15/08/2016	12/08/2016 15/08/2016	12/08/2016 15/08/2016	12/08/2016 15/08/2016

CEC		
Our Reference:	UNITS	151617-1
Your Reference		9528/BH7
	-	
Depth		0.2-0.3
Type of sample		Soil
Date prepared	-	16/08/2016
Date analysed	-	16/08/2016
ExchangeableCa	meq/100g	9.0
Exchangeable K	meq/100g	0.2
ExchangeableMg	meq/100g	6.9
ExchangeableNa	meq/100g	0.94
Cation Exchange Capacity	meq/100g	17

Misc Inorg - Soil		
Our Reference:	UNITS	151617-1
Your Reference		9528/BH7
	-	
Depth		0.2-0.3
Type of sample		Soil
Date prepared	-	15/08/2016
Date analysed	-	15/08/2016
pH1:5soil:CaCl2	pH Units	5.8

Clay 50-120g		
Our Reference:	UNITS	151617-1
Your Reference		9528/BH7
	-	
Depth		0.2-0.3
Type of sample		Soil
Date prepared	_	12/08/2016
Bateproparea		12/00/2010
Date analysed	-	15/08/2016

9528

MethodID	Methodology Summary
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" p="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""></pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" pql.<br="" stipulated="" the="">Hence a mid-point between the most and least conservative approaches above.</pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-036	Total Organic Carbon or Matter - A titrimetric method that measures the oxidisable organic content of soils.
AS1289.3.6.3	Determination Particle Size Analysis using AS1289.3.6.3 and AS1289.3.6.1 and in house method INORG-107. Clay fraction at <2um reported.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
VOCs in soil						Base II Duplicate II % RPD		
Date extracted	-			12/08/2 016	[NT]	[NT]	LCS-6	12/08/2016
Date analysed	-			12/08/2 016	[NT]	[NT]	LCS-6	12/08/2016
Dichlorodifluoromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Chloromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Bromomethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Chloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
trans-1,2-dichloroethene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,1-dichloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-6	71%
cis-1,2-dichloroethene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
bromochloromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
chloroform	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-6	72%
2,2-dichloropropane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-6	72%
1,1,1-trichloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,1-dichloropropene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Cyclohexane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
carbon tetrachloride	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Benzene	mg/kg	0.2	Org-014	<0.2	[NT]	[NT]	[NR]	[NR]
dibromomethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichloropropane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
trichloroethene	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-6	72%
bromodichloromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-6	83%
trans-1,3- dichloropropene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
cis-1,3-dichloropropene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Toluene	mg/kg	0.5	Org-014	<0.5	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
dibromochloromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-6	72%
1,2-dibromoethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
tetrachloroethene	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-6	71%
1,1,1,2- tetrachloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
chlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
bromoform	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
m+p-xylene	mg/kg	2	Org-014	~2	[NT]	[NT]	[NR]	[NR]
styrene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,1,2,2- tetrachloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
o-Xylene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2,3-trichloropropane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]

	1	-	ent Reference		528		-	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in soil						Base II Duplicate II % RPD		
isopropylbenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
bromobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
tert-butyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
sec-butyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
hexachlorobutadiene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> Dibromofluorometha	%		Org-014	88	[NT]	[NT]	LCS-6	85%
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-014	71	[NT]	[NT]	LCS-6	63%
Surrogate Toluene-d8	%		Org-014	82	[NT]	[NT]	LCS-6	82%
Surrogate 4- Bromofluorobenzene	%		Org-014	97	[NT]	[TN]	LCS-6	105%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	528 Duplicate	Duplicato regulta	Spike Sm#	Spike %
vTRH(C6-C10)/BTEXNin Soil	UNITS	PQL	METHOD	ыапк	Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Recovery
Date extracted	-			12/08/2	[NT]	[NT]	LCS-6	12/08/2016
Date analysed	-			016 12/08/2 016	[NT]	[NT]	LCS-6	12/08/2016
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-6	113%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-6	113%
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-6	120%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-6	93%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-6	118%
m+p-xylene	mg/kg	2	Org-016	~2	[NT]	[NT]	LCS-6	116%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-6	112%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Surrogate aaa-	%		Org-016	71	[NT]	[NT]	LCS-6	116%
Trifluorotoluene	70				[[[*']	[[, , ,]	200-0	11070
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			12/08/2 016	[NT]	[NT]	LCS-6	12/08/2016
Date analysed	-			12/08/2 016	[NT]	[NT]	LCS-6	12/08/2016
TRHC 10 - C14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-6	108%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-6	114%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-6	119%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-6	108%
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-6	114%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-6	119%
Surrogate o-Terphenyl	%	100	Org-003	98	[NT]	[NT]	LCS-6	113%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
QUALITIOUNINOL	ONTO	I GE		Dian	Sm#	Duplicate results	Opine Oni#	Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			12/08/2 016	[NT]	[NT]	LCS-6	12/08/2016
Date analysed	-			12/08/2 016	[NT]	[NT]	LCS-6	12/08/2016
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-6	113%
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-6	118%
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-6	123%
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-6	106%
Pyrene	mg/kg	0.1	Org-012 Org-012	<0.1	[NT]	[NT]	LCS-6	113%
Benzo(a)anthracene	mg/kg	0.1	Org-012 Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene		0.1	Org-012 Org-012	<0.1	[NT]	[NT]	LCS-6	107%
Benzo(b,j +k)fluoranthene	mg/kg mg/kg	0.1	Org-012 Org-012	<0.1	[NT]	[NT]	[NR]	[NR]

Envirolab Reference:	151617
Revision No:	R 00

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]	[NT]	LCS-6	126%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	99	[NT]	[NT]	LCS-6	92%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II %RPD		
Date extracted	-			12/08/2 016	[NT]	[NT]	LCS-6	12/08/2016
Date analysed	-			12/08/2 016	[NT]	[NT]	LCS-6	12/08/2016
HCB	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-6	98%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-6	101%
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-6	101%
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-6	101%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-6	102%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-6	103%
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-6	103%
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-6	101%
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-6	104%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-6	100%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%		Org-005	94	[NT]	[NT]	LCS-6	111%

Client Reference: 9528									
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Organophosphorus Pesticides						Base II Duplicate II % RPD			
Date extracted	-			12/08/2 016	[NT]	[NT]	LCS-6	12/08/2016	
Date analysed	-			12/08/2 016	[NT]	[NT]	LCS-6	12/08/2016	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]	
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]	
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-6	90%	
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]	
Diazinon	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]	
Dichlorvos	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-6	104%	
Dimethoate	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]	
Ethion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-6	93%	
Fenitrothion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-6	112%	
Malathion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-6	96%	
Parathion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-6	112%	
Ronnel	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-6	97%	
Surrogate TCMX	%		Org-008	94	[NT]	[NT]	LCS-6	92%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
PCBs in Soil						Base II Duplicate II % RPD			
Date extracted	-			12/08/2 016	151617-5	12/08/2016 12/08/2016	LCS-6	12/08/2016	
Date analysed	-			12/08/2 016	151617-5	12/08/2016 12/08/2016	LCS-6	12/08/2016	
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	151617-5	<0.1 <0.1	[NR]	[NR]	
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	151617-5	<0.1 <0.1	[NR]	[NR]	
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	151617-5	<0.1 <0.1	[NR]	[NR]	
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	151617-5	<0.1 <0.1	[NR]	[NR]	
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	151617-5	<0.1 <0.1	[NR]	[NR]	
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	151617-5	<0.1 <0.1	LCS-6	126%	
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	151617-5	<0.1 <0.1	[NR]	[NR]	
Surrogate TCLMX	%		Org-006	94	151617-5	91 91 RPD:0	LCS-6	96%	

			ent Referenc	1	Duplicate	Duplicate requite	Spiles Ore !!	Spiles 0/
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Date prepared	-			12/08/2 016	151617-5	12/08/2016 12/08/2016	LCS-6	12/08/2016
Date analysed	-			12/08/2 016	151617-5	12/08/2016 12/08/2016	LCS-6	12/08/2016
Arsenic	mg/kg	4	Metals-020	<4	151617-5	15 14 RPD:7	LCS-6	106%
Cadmium	mg/kg	0.4	Metals-020	<0.4	151617-5	<0.4 <0.4	LCS-6	98%
Chromium	mg/kg	1	Metals-020	<1	151617-5	18 17 RPD:6	LCS-6	103%
Copper	mg/kg	1	Metals-020	<1	151617-5	19 17 RPD:11	LCS-6	106%
Lead	mg/kg	1	Metals-020	<1	151617-5	14 14 RPD:0	LCS-6	99%
Mercury	mg/kg	0.1	Metals-021	<0.1	151617-5	<0.1 <0.1	LCS-6	106%
Nickel	mg/kg	1	Metals-020	<1	151617-5	17 15 RPD:12	LCS-6	99%
Zinc	mg/kg	1	Metals-020	<1	151617-5	56 51 RPD:9	LCS-6	99%
Iron	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-6	100%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank				
Misc Soil - Inorg								
Date prepared	-			12/08/2				
				016				
Date analysed	-			12/08/2 016				
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	45				
QUALITY CONTROL CEC	UNITS	PQL	METHOD	Blank				
Date prepared	-			16/08/2 016				
Date analysed	-			16/08/2 016				
Exchangeable Ca	meq/100 g	0.1	Metals-009	<0.1				
ExchangeableK	meq/100 g	0.1	Metals-009	<0.1				
ExchangeableMg	meq/100 g	0.1	Metals-009	<0.1				
ExchangeableNa	meq/100 g	0.1	Metals-009	<0.1				
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Misc Inorg - Soil						Base II Duplicate II % RPD		
Date prepared	-			15/08/2 016	[NT]	[NT]	LCS-6	15/08/2016
Date analysed	-			15/08/2 016	[NT]	[NT]	LCS-6	15/08/2016
pH1:5soil:CaCl2	pH Units		Inorg-001	[NT]	[NT]	[NT]	LCS-6	100%
, Total Organic Carbon (Walkley Black)	mg/kg	1000	Inorg-036	<1000	[NT]	[NT]	LCS-6	97%

			Clie	nt Referenc	e: 95	28
QUALITYCONTROL	UNITS	PQL	-	METHOD	Blank	
Clay 50-120g						
Date prepared	-				[NT]	
Date analysed	-				[NT]	
Clay in soils <2um	% (w/w)			AS1289.3.6 .3	[NT]	
QUALITYCONTROL		3		 Dup. Sm#		Duplicate
VOCs in soil						ouplicate + %RPD
Date extracted	-		1	51617-13	12/08/20	016 12/08/2016
Date analysed	-		1	51617-13	12/08/20	016 12/08/2016
Dichlorodifluoromethane	mg/kg	J	1	51617-13		<1 <1
Chloromethane	mg/kg	3	1	51617-13		<1 <1
Vinyl Chloride	mg/kg	3	1	51617-13		<1 <1
Bromomethane	mg/kg	,	1	51617-13		<1 <1
Chloroethane	mg/kg	9	1	51617-13		<1 <1
Trichlorofluoromethane	mg/kg		1	51617-13		<1 <1
1,1-Dichloroethene	mg/kg	,	1	51617-13		<1 <1
trans-1,2-dichloroethene	mg/kg	J	1	51617-13		<1 <1
1,1-dichloroethane	mg/kg	J	1	51617-13		<1 <1
cis-1,2-dichloroethene	mg/kg	3	1	51617-13		<1 <1
bromochloromethane	mg/kg	3	1	51617-13		<1 <1
chloroform	mg/kg	J	1	51617-13		<1 <1
2,2-dichloropropane	mg/kg	J	1	51617-13		<1 <1
1,2-dichloroethane	mg/kg	J	1	51617-13		<1 <1
1,1,1-trichloroethane	mg/kg	J	1	51617-13		<1 <1
1,1-dichloropropene	mg/kg	J	1	51617-13		<1 <1
Cyclohexane	mg/kg	J	1	51617-13		<1 <1
carbon tetrachloride	mg/kg	j	1	51617-13		<1 <1
Benzene	mg/kg	j	1	51617-13	<	0.2 <0.2
dibromomethane	mg/kg	j	1	51617-13		<1 <1
1,2-dichloropropane	mg/kg	j	1	51617-13		<1 <1
trichloroethene	mg/kg	J	1	51617-13		<1 <1
bromodichloromethane	mg/kg	j	1	51617-13		<1 <1
trans-1,3-dichloropropene	mg/kg	,	1	51617-13		<1 <1
cis-1,3-dichloropropene	mg/kg	J	1	51617-13		<1 <1
1,1,2-trichloroethane	mg/kg	J	1	51617-13		<1 <1
Toluene	mg/kg	J	1	51617-13	<	0.5 <0.5
1,3-dichloropropane	mg/kg	J	1	51617-13		<1 <1
dibromochloromethane	mg/kg	,	1	51617-13		<1 <1
1,2-dibromoethane	mg/kg	,	1	51617-13		<1 <1
tetrachloroethene	mg/kg	ļ	1	51617-13		<1 <1
1,1,1,2-tetrachloroethane	mg/kg	ļ	1	51617-13		<1 <1
chlorobenzene	mg/kg	9	1	51617-13		<1 <1
Ethylbenzene	mg/kg	9	1	51617-13		<1 <1

		Client Reference	e: 9528
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate
VOCs in soil			Base + Duplicate + %RPD
bromoform	mg/kg	151617-13	<1 <1
m+p-xylene	mg/kg	151617-13	<2 <2
styrene	mg/kg	151617-13	<1 <1
1,1,2,2-tetrachloroethane	mg/kg	151617-13	<1 <1
o-Xylene	mg/kg	151617-13	<1 <1
1,2,3-trichloropropane	mg/kg	151617-13	<1 <1
isopropylbenzene	mg/kg	151617-13	<1 <1
bromobenzene	mg/kg	151617-13	<1 <1
n-propyl benzene	mg/kg	151617-13	<1 <1
2-chlorotoluene	mg/kg	151617-13	<1 <1
4-chlorotoluene	mg/kg	151617-13	<1 <1
1,3,5-trimethyl benzene	mg/kg	151617-13	<1 <1
tert-butyl benzene	mg/kg	151617-13	<1 <1
1,2,4-trimethyl benzene	mg/kg	151617-13	<1 <1
1,3-dichlorobenzene	mg/kg	151617-13	<1 <1
sec-butyl benzene	mg/kg	151617-13	<1 <1
1,4-dichlorobenzene	mg/kg	151617-13	<1 <1
4-isopropyl toluene	mg/kg	151617-13	<1 <1
1,2-dichlorobenzene	mg/kg	151617-13	<1 <1
n-butyl benzene	mg/kg	151617-13	<1 <1
1,2-dibromo-3- chloropropane	mg/kg	151617-13	<1 <1
1,2,4-trichlorobenzene	mg/kg	151617-13	<1 <1
hexachlorobutadiene	mg/kg	151617-13	<1 <1
1,2,3-trichlorobenzene	mg/kg	151617-13	<1 <1
<i>Surrogate</i> Dibromofluorometha	%	151617-13	91 103 RPD: 12
<i>Surrogate</i> aaa- Trifluorotoluene	%	151617-13	109 71 RPD:42
Surrogate Toluene-d8	%	151617-13	79 90 RPD:13
Surrogate 4- Bromofluorobenzene	%	151617-13	97 98 RPD: 1

		Client Reference	e: 9528
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate
vTRH(C6-C10)/BTEXN in Soil			Base + Duplicate + %RPD
Date extracted	-	151617-13	12/08/2016 12/08/2016
Date analysed	-	151617-13	12/08/2016 12/08/2016
TRHC6 - C9	mg/kg	151617-13	<25 <25
TRHC6 - C10	mg/kg	151617-13	<25 <25
Benzene	mg/kg	151617-13	<0.2 <0.2
Toluene	mg/kg	151617-13	<0.5 <0.5
Ethylbenzene	mg/kg	151617-13	<1 <1
m+p-xylene	mg/kg	151617-13	<2 <2
o-Xylene	mg/kg	151617-13	<1 <1
naphthalene	mg/kg	151617-13	<1 <1
Surrogate aaa- Trifluorotoluene	%	151617-13	109 71 RPD:42
QUALITY CONTROL	UNITS	Dup.Sm#	Duplicate
svTRH (C10-C40) in Soil			Base + Duplicate + % RPD
Date extracted	-	151617-13	12/08/2016 12/08/2016
Date analysed	-	151617-13	12/08/2016 12/08/2016
TRHC 10 - C 14	mg/kg	151617-13	<50 <50
TRHC 15 - C28	mg/kg	151617-13	<100 <100
TRHC29 - C36	mg/kg	151617-13	<100 <100
TRH>C10-C16	mg/kg	151617-13	<50 <50
TRH>C16-C34	mg/kg	151617-13	<100 <100
TRH>C34-C40	mg/kg	151617-13	<100 <100
Surrogate o-Terphenyl	%	151617-13	84 84 RPD:0
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD
Date extracted	-	151617-13	12/08/2016 12/08/2016
Date analysed	-	151617-13	12/08/2016 12/08/2016
Naphthalene	mg/kg	151617-13	<0.1 <0.1
Acenaphthylene	mg/kg	151617-13	<0.1 <0.1
Acenaphthene	mg/kg	151617-13	<0.1 <0.1
Fluorene	mg/kg	151617-13	<0.1 <0.1
Phenanthrene	mg/kg	151617-13	<0.1 <0.1
Anthracene	mg/kg	151617-13	<0.1 <0.1
Fluoranthene	mg/kg	151617-13	<0.1 <0.1
Pyrene	mg/kg	151617-13	<0.1 <0.1
Benzo(a)anthracene	mg/kg	151617-13	<0.1 <0.1
Chrysene	mg/kg	151617-13	<0.1 <0.1
Benzo(b,j+k)fluoranthene	mg/kg	151617-13	<0.2 <0.2
Benzo(a)pyrene	mg/kg	151617-13	<0.05 <0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	151617-13	<0.1 <0.1
Dibenzo(a,h)anthracene	mg/kg	151617-13	<0.1 <0.1

		Client Reference	ce: 9528		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		
PAHs in Soil			Base + Duplicate + % RPD		
Benzo(g,h,i)perylene	mg/kg	151617-13	<0.1 <0.1		
Surrogate p-Terphenyl-d14	%	151617-13	93 92 RPD:1		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date prepared	-	151617-13	12/08/2016 12/08/2016		
Date analysed	-	151617-13	12/08/2016 12/08/2016		
Arsenic	mg/kg	151617-13	8 6 RPD:29		
Cadmium	mg/kg	151617-13	<0.4 <0.4		
Chromium	mg/kg	151617-13	16 13 RPD:21		
Copper	mg/kg	151617-13	23 20 RPD:14		
Lead	mg/kg	151617-13	23 19 RPD:19		
Mercury	mg/kg	151617-13	<0.1 <0.1		
Nickel	mg/kg	151617-13	12 11 RPD:9		
Zinc	mg/kg	151617-13	42 37 RPD:13		
Iron	mg/kg	[NT]	[NT]		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Misc Soil - Inorg			Base + Duplicate + %RPD		
Date prepared	-	[NT]	[NT]	LCS-1	12/08/2016
Date analysed	-	[NT]	[NT]	LCS-1	12/08/2016
Total Phenolics (as Phenol)	mg/kg	[NT]	[NT]	LCS-1	104%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
CEC			Base + Duplicate + %RPD		
Date prepared	-	[NT]	[NT]	LCS-1	16/08/2016
Date analysed	-	[NT]	[NT]	LCS-1	16/08/2016
Exchangeable Ca	meq/100	[NT]	[NT]	LCS-1	108%
	g				
ExchangeableK	meq/100 g	[NT]	[NT]	LCS-1	107%
ExchangeableMg	9 meq/100	[NT]	[NT]	LCS-1	108%
Excitatigeable mg	g	[, * ,]	[.*.]	200 1	10070
ExchangeableNa	meq/100	[NT]	[NT]	LCS-1	119%
	g				

Client Reference: 9528									
QUALITY CONTROL PCBs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery				
Date extracted	-	[NT]	[NT]	151617-6	12/08/2016				
Date analysed	-	[NT]	[NT]	151617-6	12/08/2016				
Aroclor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]				
Aroclor 1221	mg/kg	[NT]	[NT]	[NR]	[NR]				
Aroclor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]				
Aroclor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]				
Aroclor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]				
Aroclor 1254	mg/kg	[NT]	[NT]	151617-6	121%				
Aroclor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]				
Surrogate TCLMX	%	[NT]	[NT]	151617-6	95%				
QUALITYCONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery				
Date prepared	-	[NT]	[NT]	151617-6	12/08/2016				
Date analysed	-	[NT]	[NT]	151617-6	12/08/2016				
Arsenic	mg/kg	[NT]	[NT]	151617-6	82%				
Cadmium	mg/kg	[NT]	[NT]	151617-6	85%				
Chromium	mg/kg	[NT]	[NT]	151617-6	87%				
Copper	mg/kg	[NT]	[NT]	151617-6	100%				
Lead	mg/kg	[NT]	[NT]	151617-6	79%				
Mercury	mg/kg	[NT]	[NT]	151617-6	109%				
Nickel	mg/kg	[NT]	[NT]	151617-6	84%				
Zinc	mg/kg	[NT]	[NT]	151617-6	83%				
Iron	mg/kg	[NT]	[NT]	[NR]	[NR]				

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Getex Pty Ltd
Attention	Justin Thompson-Laing

Sample Login Details	
Your Reference	9528
Envirolab Reference	151617
Date Sample Received	10/08/2016
Date Instructions Received	10/08/2016
Date Results Expected to be Reported	17/08/2016

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	16 Soils
Turnaround Time Requested	Standard
Temperature on receipt (°C)	2.0
Cooling Method	Ice
Sampling Date Provided	YES

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au

Sample and Testing Details on following page

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	VOCs in soil	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PCBs in Soil	Acid Extractable metals in soil	Total Phenolics (as Phenol)	CEC	pH 1:5 soil:CaCl2	Total Organic Carbon (Walkley Black)	Clay 50-120g	On Hold
9528/BH7-		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
0.2-0.3			/											
9528/BH7-3.0		\checkmark	\checkmark					√ √						
9528/BH8-1.0		✓	\checkmark	,				√ √						
9528/BH8-3.0		\checkmark	\checkmark	\checkmark				\checkmark						
9528/BH9-							\checkmark	\checkmark						
0.2-0.3 9528/BH9a-							/							
0.1							\checkmark	\checkmark						
9528/BH10a-							\checkmark	./						
0.1							v	v						
9528/BH10-							\checkmark	1						
2.0							v	v						
9528/BH11-							\checkmark	\checkmark						
0.2-0.3							-							
9528/BH11-							\checkmark	\checkmark						
2.0														
9528/BH12-							\checkmark	\checkmark						
0.2-0.3														
9528/BH12-							\checkmark	\checkmark						
3.0														
9528/BH13-	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark					
0.2-0.3 9528/BH13-			/					,						_
9528/BH13- 1.0		\checkmark	\checkmark	\checkmark				\checkmark						
9528/BH13-		1	./	./				1	1					
3.0		~	V	V				V	V					
9528/BH11-														1
1.0														v

Envirolab Service 12 Ashley St ENVIROLAB **Chain of Custody** Chatswood NSW 2067 Ph: (02) 9910 6200 From: Getex Pty Ltd To: Envirolab Services Pty Ltd Date: 10/08/2016 NO:151617 Order Number: 5751 Address: 2.02, Building 2, Macquarie Business Park Address: 12 Ashley Street CHATSWOOD NSW 2067_{Date Received}: 0/8/16-Project Number: 9528 35 Waterloo Road Time Received \$ 50 MACQUARIE PARK NSW 2113 Phone: (02) 9910 6200 GETEX Received by: gm Phone: (02) 9889 2488 Facsimile: (02) 9910 6299 TAT: 5 days Temp: Cool/Ambient Facsimile: (02) 9889 2499 Cooling Tce/cepack Email: help@getex.com.au Security: Intact/Broken/None Attention: Justin Thompson-Laing Samples Recieved Chilled Received By ASTORIA . MAR LOVE J81 Samples Received at Ambient Temp. Notes: Suite of 8 Metals Soil Container **Combos and Non-Standard Analytes Single Analytes** Plastic Tube - PT Bag – B Su **Envirolab Barcode Getex Sample** Petri Dish – PD Combination 1m Met Char S 5b Combination 3 4 Number Plastic Bottle – PB eachable PAH Number ombination ombination Leachable Glass Jar – GJ 4-17 Metals NEPM Soil (CLP Prep Routin ienolics RH/BTEX sbestos Ammonia AH Low Glass Bottle - GB yanide Glass Vial - GV OCs AH OCP ddC ead CB 9528/BH7/0.2-0.3 GJ 1 1 1 GJ) 9528/BH7/3.0 3 1 9528/BH8/1.0 GJ 4 9528/BH8/3.0 GJ 1 S 9528/BH9/0.2-0.3 GJ 1 1 1 GJ 6 9528/BH9a/0.1 1 7 1 9528/BH10a/0.1 GJ 8 9528/BH10/2.0 GJ 1 1 CI 1 9528/BH11/0.2-0.3 GJ 1 10 9528/BH11/2.0 GJ 1 1 GJ 1 9528/BH12/0.2-0.3 1 12 1 9528/BH12/3.0 GJ 1 2 9528/BH13/0.2-0.3 GJ 1 1 1 14 9528/BH13/1.0 GJ 9528/BH13/3.0 GJ 1 9528/0411/1.0 Total 8 8 1 2 2 16 1

AM

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

151618

Client: Getex Pty Ltd

2.02, Building 2 Waterloo Business Park 35 Waterloo Rd North Ryde NSW 2113

Attention: Justin Thompson Laing

Sample log in details:

Your Reference:	9528		
No. of samples:	11 soils		
Date samples received / completed instructions received	10/08/16	/	10/08/16

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. Please refer to the last page of this report for any comments relating to the results.

Report Details:			
Date results requested by: / Issue Date:	17/08/16	/	16/08/16
Date of Preliminary Report:	Not Issued		
NATA accreditation number 2901. This document shall no	t be reproduced e	except	in full.
Accredited for compliance with ISO/IEC 17025 - Testing	Tests n	ot cov	vered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

VOCs in soil					
Our Reference:	UNITS	151618-1	151618-2	151618-8	151618-9
Your Reference		9528/BH14	9528/BH14	9528/BH16	9528/BH16
	-				
Depth		0.2-0.3	2.0	1.0	3.0
Type of sample		soil	soil	soil	soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1	<1
chloroform	mg/kg	<1	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1	<1
carbon tetrachloride		<1	<1	<1	<1
	mg/kg	<0.2	<0.2	<0.2	<0.2
Benzene	mg/kg	-	-	-	
dibromomethane	mg/kg	<1	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1	<1
Ethylbenzene	mg/kg	<1	<1	<1	<1
bromoform	mg/kg	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2
styrene	mg/kg	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1	<1
o-Xylene	mg/kg	<1	<1	<1	<1

VOCs in soil Our Reference: Your Reference	UNITS	151618-1 9528/BH14	151618-2 9528/BH14	151618-8 9528/BH16	151618-9 9528/BH16
Depth Type of sample		0.2-0.3 soil	2.0 soil	1.0 soil	3.0 soil
1,2,3-trichloropropane	mg/kg	<1	<1	<1	<1
isopropylbenzene	mg/kg	<1	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1	<1
Surrogate Dibromofluorometha	%	90	94	92	106
Surrogate aaa-Trifluorotoluene	%	69	74	73	94
Surrogate Toluene-d8	%	80	80	79	90
Surrogate 4-Bromofluorobenzene	%	86	85	87	86

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	151618-1	151618-2	151618-3	151618-4	151618-5
Your Reference		9528/BH14	9528/BH14	9528/BH14	9528/BH15	9528/BH15
Depth	-	0.2-0.3	2.0	4.0	0.2-0.3	1.0
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	69	74	93	98	84
vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	151618-6	151618-7	151618-8	151618-9	151618-10
Your Reference		9528/BH15	9528/BH16	9528/BH16	9528/BH16	9528/BH1
Depth	-	3.0	0.2-0.3	1.0	3.0	1.0a
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	85	85	73	94	82

(
vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	151618-11
Your Reference		9528/BH14
	-	
Depth		0.2-0.3
Type of sample		soil
Date extracted	-	11/08/2016
Date analysed	-	12/08/2016
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	81

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	151618-1	151618-2	151618-3	151618-4	151618-5
Your Reference		9528/BH14	9528/BH14	9528/BH14	9528/BH15	9528/BH15
	-					
Depth		0.2-0.3	2.0	4.0	0.2-0.3	1.0
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016	11/08/2016	12/08/2016	12/08/2016
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC 29 - C 36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	83	87	83	91	83

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	151618-6	151618-7	151618-8	151618-9	151618-10
Your Reference		9528/BH15	9528/BH16	9528/BH16	9528/BH16	9528/BH1
	-					
Depth		3.0	0.2-0.3	1.0	3.0	1.0a
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	84	90	82	83	82

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	151618-11
Your Reference		9528/BH14
	-	
Depth		0.2-0.3
Type of sample		soil
Date extracted	-	11/08/2016
Date analysed	-	12/08/2016
TRHC 10 - C14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC 29 - C36	mg/kg	<100
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	<100
TRH>C34-C40	mg/kg	<100
Surrogate o-Terphenyl	%	83

PAHs in Soil						
Our Reference:	UNITS	151618-1	151618-2	151618-3	151618-4	151618-5
Your Reference		9528/BH14	9528/BH14	9528/BH14	9528/BH15	9528/BH15
Depth	-	0.2-0.3	2.0	4.0	0.2-0.3	1.0
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	96	96	95	94	95

PAHs in Soil						
Our Reference:	UNITS	151618-6	151618-7	151618-8	151618-9	151618-10
Your Reference		9528/BH15	9528/BH16	9528/BH16	9528/BH16	9528/BH1
Depth	-	3.0	0.2-0.3	1.0	3.0	1.0a
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	98	89	95	95	98

Г		
PAHs in Soil		
Our Reference:	UNITS	151618-11
Your Reference		9528/BH14
Depth		0.2-0.3
Type of sample		soil
Date extracted	-	11/08/2016
Date analysed	-	11/08/2016
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE
Surrogate p-Terphenyl-d14	%	93

Acid Extractable metals in soil						
Our Reference:	UNITS	151618-1	151618-2	151618-3	151618-4	151618-5
Your Reference		9528/BH14	9528/BH14	9528/BH14	9528/BH15	9528/BH15
	-					
Depth		0.2-0.3	2.0	4.0	0.2-0.3	1.0
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Arsenic	mg/kg	5	6	<4	10	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	15	13	13	18	14
Copper	mg/kg	24	38	35	15	36
Lead	mg/kg	14	19	17	19	18
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	11	16	18	9	16
Zinc	mg/kg	49	76	71	26	53

Acid Extractable metals in soil Our Reference: Your Reference	UNITS	151618-6 9528/BH15	151618-7 9528/BH16	151618-8 9528/BH16	151618-9 9528/BH16	151618-10 9528/BH1
Depth Type of sample		3.0 soil	0.2-0.3 soil	1.0 soil	3.0 soil	1.0a soil
Date prepared	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Arsenic	mg/kg	5	6	7	<4	11
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	15	16	6	16
Copper	mg/kg	38	19	21	18	14
Lead	mg/kg	14	15	17	24	9
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	18	10	10	10	6
Zinc	mg/kg	70	37	34	48	23

Acid Extractable metals in soil		
Our Reference:	UNITS	151618-11
Your Reference		9528/BH14
	-	
Depth		0.2-0.3
Type of sample		soil
Date prepared	-	11/08/2016
Date analysed	-	11/08/2016
Arsenic	mg/kg	6
Cadmium	mg/kg	<0.4
Chromium	mg/kg	15
Copper	mg/kg	29
Lead	mg/kg	15
Mercury	mg/kg	<0.1
Nickel	mg/kg	12
Zinc	mg/kg	55

Envirolab Reference:	151618
Revision No:	R 00

12/08/2016

18

-

%

9528

Moisture						
Our Reference:	UNITS	151618-1	151618-2	151618-3	151618-4	151618-5
Your Reference		9528/BH14	9528/BH14	9528/BH14	9528/BH15	9528/BH15
	-					
Depth		0.2-0.3	2.0	4.0	0.2-0.3	1.0
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
Moisture	%	19	15	11	16	17
Moisture						
Our Reference:	UNITS	151618-6	151618-7	151618-8	151618-9	151618-10
Your Reference		9528/BH15	9528/BH16	9528/BH16	9528/BH16	9528/BH1
	-					
Depth		3.0	0.2-0.3	1.0	3.0	1.0a
Type of sample		soil	soil	soil	soil	soil
	_	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date prepared	-					
Date prepared Date analysed	-	12/08/2016	12/08/2016	12/08/2016	12/08/2016	12/08/2016
	- %	12/08/2016 7.9	12/08/2016 16	12/08/2016 19	12/08/2016 11	12/08/2016 15
Date analysed	-					
Date analysed	-					
Date analysed Moisture	-					
Date analysed Moisture Moisture	- %	7.9				
Date analysed Moisture Moisture Our Reference: Your Reference	- %	7.9 151618-11 9528/BH14				
Date analysed Moisture Our Reference: Your Reference Depth	- %	7.9 151618-11 9528/BH14 0.2-0.3				
Date analysed Moisture Moisture Our Reference: Your Reference	- %	7.9 151618-11 9528/BH14				

Date analysed

Moisture

Misc Soil - Inorg Our Reference: Your Reference	UNITS 	151618-1 9528/BH14	151618-3 9528/BH14	151618-4 9528/BH15	151618-6 9528/BH15	151618-7 9528/BH16
Depth		0.2-0.3	4.0	0.2-0.3	3.0	0.2-0.3
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Date analysed		11/08/2016	11/08/2016	11/08/2016	11/08/2016	11/08/2016
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Misc Soil - Inorg Our Reference: Your Reference	UNITS	151618-9 9528/BH16
Depth	-	3.0
Type of sample		soil
Date prepared	-	11/08/2016
Date analysed	-	11/08/2016
Total Phenolics (as Phenol)	mg/kg	<5

ce:	9528

MethodID	Methodology Summary
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" td="" teq="" teqs="" that="" the="" this="" to=""></pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" pql.<br="" stipulated="" the="">Hence a mid-point between the most and least conservative approaches above.</pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#	Raaa II Duplicate II % DDD		Recovery
VOCs in soil						Base II Duplicate II % RPD		
Date extracted	-			11/08/2 016	151618-1	11/08/2016 11/08/2016	LCS-2	11/08/2016
Date analysed	-			12/08/2 016	151618-1	12/08/2016 12/08/2016	LCS-2	12/08/2016
Dichlorodifluoromethane	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
Chloromethane	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
Vinyl Chloride	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
Bromomethane	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
Chloroethane	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
Trichlorofluoromethane	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
1,1-Dichloroethene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
trans-1,2-dichloroethene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
1,1-dichloroethane	mg/kg	1	Org-014	<1	151618-1	<1 <1	LCS-2	77%
cis-1,2-dichloroethene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
bromochloromethane	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
chloroform	mg/kg	1	Org-014	<1	151618-1	<1 <1	LCS-2	80%
2,2-dichloropropane	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
1,2-dichloroethane	mg/kg	1	Org-014	<1	151618-1	<1 <1	LCS-2	79%
1,1,1-trichloroethane	mg/kg	1	Org-014	<1	151618-1	<1 <1	LCS-2	111%
1,1-dichloropropene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
Cyclohexane	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
carbon tetrachloride	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
Benzene	mg/kg	0.2	Org-014	<0.2	151618-1	<0.2 <0.2	[NR]	[NR]
dibromomethane	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
1,2-dichloropropane	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
trichloroethene	mg/kg	1	Org-014	<1	151618-1	<1 <1	LCS-2	80%
bromodichloromethane	mg/kg	1	Org-014	<1	151618-1	<1 <1	LCS-2	88%
trans-1,3- dichloropropene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
cis-1,3-dichloropropene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
1,1,2-trichloroethane	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
Toluene	mg/kg	0.5	Org-014	<0.5	151618-1	<0.5 <0.5	[NR]	[NR]
1,3-dichloropropane	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
dibromochloromethane	mg/kg	1	Org-014	<1	151618-1	<1 <1	LCS-2	89%
1,2-dibromoethane	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
tetrachloroethene	mg/kg	1	Org-014	<1	151618-1	<1 <1	LCS-2	78%
1,1,1,2- tetrachloroethane	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
chlorobenzene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
Ethylbenzene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
bromoform	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
m+p-xylene	mg/kg	2	Org-014	~2	151618-1	<2 <2	[NR]	[NR]
styrene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
1,1,2,2- tetrachloroethane	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
o-Xylene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
1,2,3-trichloropropane	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in soil						Base II Duplicate II % RPD		
isopropylbenzene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
bromobenzene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
n-propyl benzene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
2-chlorotoluene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
4-chlorotoluene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
tert-butyl benzene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
sec-butyl benzene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
4-isopropyl toluene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
n-butyl benzene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
hexachlorobutadiene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
<i>Surrogate</i> Dibromofluorometha	%		Org-014	103	151618-1	90 93 RPD:3	LCS-2	86%
Surrogate aaa- Trifluorotoluene	%		Org-014	102	151618-1	69 83 RPD:18	LCS-2	78%
Surrogate Toluene-d8	%		Org-014	91	151618-1	80 81 RPD:1	LCS-2	85%
Surrogate 4- Bromofluorobenzene	%		Org-014	86	151618-1	86 88 RPD: 2	LCS-2	106%

			ent Reference	-	528			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Soil								
Date extracted	-			12/08/2 016	151618-1	11/08/2016 11/08/2016	LCS-2	12/08/2016
Date analysed	-			12/08/2 016	151618-1	12/08/2016 12/08/2016	LCS-2	12/08/2016
TRHC6 - C9	mg/kg	25	Org-016	<25	151618-1	<25 <25	LCS-2	85%
TRHC6 - C10	mg/kg	25	Org-016	<25	151618-1	<25 <25	LCS-2	85%
Benzene	mg/kg	0.2	Org-016	<0.2	151618-1	<0.2 <0.2	LCS-2	83%
Toluene	mg/kg	0.5	Org-016	<0.5	151618-1	<0.5 <0.5	LCS-2	85%
Ethylbenzene	mg/kg	1	Org-016	<1	151618-1	<1 <1	LCS-2	86%
m+p-xylene	mg/kg	2	Org-016	<2	151618-1	<2 <2	LCS-2	86%
o-Xylene	mg/kg	1	Org-016	<1	151618-1	<1 <1	LCS-2	88%
naphthalene	mg/kg	1	Org-014	<1	151618-1	<1 <1	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	84	151618-1	69 83 RPD:18	LCS-2	83%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			11/08/2 016	151618-1	11/08/2016 11/08/2016	LCS-2	11/08/2016
Date analysed	-			11/08/2 016	151618-1	11/08/2016 11/08/2016	LCS-2	11/08/2016
TRHC 10 - C 14	mg/kg	50	Org-003	<50	151618-1	<50 <50	LCS-2	114%
TRHC 15 - C28	mg/kg	100	Org-003	<100	151618-1	<100 <100	LCS-2	108%
TRHC29 - C36	mg/kg	100	Org-003	<100	151618-1	<100 <100	LCS-2	119%
TRH>C10-C16	mg/kg	50	Org-003	<50	151618-1	<50 <50	LCS-2	114%
TRH>C16-C34	mg/kg	100	Org-003	<100	151618-1	<100 <100	LCS-2	108%
TRH>C34-C40	mg/kg	100	Org-003	<100	151618-1	<100 <100	LCS-2	119%
Surrogate o-Terphenyl	%		Org-003	94	151618-1	83 84 RPD:1	LCS-2	95%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			11/08/2 016	151618-1	11/08/2016 11/08/2016	LCS-2	11/08/2016
Date analysed	-			016 11/08/2 016	151618-1	11/08/2016 11/08/2016	LCS-2	11/08/2016
Naphthalene	mg/kg	0.1	Org-012	<0.1	151618-1	<0.1 <0.1	LCS-2	113%
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	151618-1	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	151618-1	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012	<0.1	151618-1	<0.1 <0.1	LCS-2	115%
Phenanthrene	mg/kg	0.1	Org-012	<0.1	151618-1	<0.1 <0.1	LCS-2	125%
Anthracene	mg/kg	0.1	Org-012 Org-012	<0.1	151618-1	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 Org-012	<0.1	151618-1	<0.1 <0.1	LCS-2	111%
Pyrene	mg/kg	0.1	Org-012 Org-012	<0.1	151618-1	<0.1 <0.1	LCS-2 LCS-2	119%
Benzo(a)anthracene		0.1	Org-012 Org-012	<0.1	151618-1	<0.1 <0.1		
	mg/kg		-				[NR]	[NR]
Chrysene Benzo(b,j +k)fluoranthene	mg/kg mg/kg	0.1 0.2	Org-012 Org-012	<0.1 <0.2	151618-1 151618-1	<0.1 <0.1 <0.2 <0.2	LCS-2 [NR]	102% [NR]

Client Reference: 9528								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Soil					Sm#	Base II Duplicate II % RPD		Recovery
	-							
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	151618-1	<0.05 <0.05	LCS-2	116%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	151618-1	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	151618-1	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	151618-1	<0.1 <0.1	[NR]	[NR]
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012	92	151618-1	96 96 RPD:0	LCS-2	120%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Date prepared	-			11/08/2 016	151618-1	11/08/2016 11/08/2016	LCS-2	11/08/2016
Date analysed	-			11/08/2 016	151618-1	11/08/2016 11/08/2016	LCS-2	11/08/2016
Arsenic	mg/kg	4	Metals-020	<4	151618-1	5 5 RPD:0	LCS-2	111%
Cadmium	mg/kg	0.4	Metals-020	<0.4	151618-1	<0.4 <0.4	LCS-2	109%
Chromium	mg/kg	1	Metals-020	<1	151618-1	15 14 RPD:7	LCS-2	109%
Copper	mg/kg	1	Metals-020	<1	151618-1	24 25 RPD:4	LCS-2	109%
Lead	mg/kg	1	Metals-020	<1	151618-1	14 14 RPD:0	LCS-2	102%
Mercury	mg/kg	0.1	Metals-021	<0.1	151618-1	<0.1 <0.1	LCS-2	115%
Nickel	mg/kg	1	Metals-020	<1	151618-1	11 11 RPD:0	LCS-2	103%
Zinc	mg/kg	1	Metals-020	<1	151618-1	49 50 RPD:2	LCS-2	104%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results		
Misc Soil - Inorg					3II#	Base II Duplicate II % RPD		
0				44/00/0	454040.4	-	-	
Date prepared	-			11/08/2 016	151618-1	11/08/2016 11/08/2016		
Date analysed	-			11/08/2 016	151618-1	11/08/2016 11/08/2016		
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	-5	151618-1	<5 <5		
QUALITYCONTROL		3	 Dup.Sm#		Duplicate		Т	
vTRH(C6-C10)/BTEXNin Soil		_			Duplicate + %RF	סי		
Date extracted	-		51618-11	11/08/2	2016 11/08/201	6		
Date analysed	-		51618-11		2016 12/08/201			
TRHC6 - C9	mg/kg		51618-11		<25 <25	-		
TRHC6 - C10	mg/k	-	51618-11		<25 <25			
Benzene	mg/kg	-	51618-11		<0.2 <0.2			
Toluene		-						
	mg/kg	-	51618-11		<0.5 <0.5			
Ethylbenzene	mg/kg	-	51618-11		<1 <1			
m+p-xylene	mg/kg	-	51618-11		<2 <2			
o-Xylene	mg/k	g 1	51618-11		<1 <1			
naphthalene	mg/k	g 1	51618-11		<1 <1			
<i>Surrogate</i> aaa- Trifluorotoluene	%		51618-11	81	86 RPD:6			

Client Reference: 9528					
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		
svTRH (C10-C40) in Soil			Base + Duplicate + % RPD		
Date extracted	-	151618-11	11/08/2016 11/08/2016		
Date analysed	-	151618-11	12/08/2016 12/08/2016		
TRHC 10 - C14	mg/kg	151618-11	<50 <50		
TRHC 15 - C28	mg/kg	151618-11	<100 <100		
TRHC29 - C36	mg/kg	151618-11	<100 <100		
TRH>C10-C16	mg/kg	151618-11	<50 <50		
TRH>C16-C34	mg/kg	151618-11	<100 <100		
TRH>C34-C40	mg/kg	151618-11	<100 <100		
Surrogate o-Terphenyl	%	151618-11	83 84 RPD:1		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	151618-11	11/08/2016 11/08/2016		
Date analysed	-	151618-11	11/08/2016 11/08/2016		
Naphthalene	mg/kg	151618-11	<0.1 <0.1		
Acenaphthylene	mg/kg	151618-11	<0.1 <0.1		
Acenaphthene	mg/kg	151618-11	<0.1 <0.1		
Fluorene	mg/kg	151618-11	<0.1 <0.1		
Phenanthrene	mg/kg	151618-11	<0.1 <0.1		
Anthracene	mg/kg	151618-11	<0.1 <0.1		
Fluoranthene	mg/kg	151618-11	<0.1 <0.1		
Pyrene	mg/kg	151618-11	<0.1 <0.1		
Benzo(a)anthracene	mg/kg	151618-11	<0.1 <0.1		
Chrysene	mg/kg	151618-11	<0.1 <0.1		
Benzo(b,j+k)fluoranthene	mg/kg	151618-11	<0.2 <0.2		
Benzo(a)pyrene	mg/kg	151618-11	<0.05 <0.05		
Indeno(1,2,3-c,d)pyrene	mg/kg	151618-11	<0.1 <0.1		
Dibenzo(a,h)anthracene	mg/kg	151618-11	<0.1 <0.1		
Benzo(g,h,i)perylene	mg/kg	151618-11	<0.1 <0.1		
Surrogate p-Terphenyl-d14	%	151618-11	93 98 RPD:5		

		Client Reference	e: 9528		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date prepared	-	151618-11	11/08/2016 11/08/2016		
Date analysed	-	151618-11	11/08/2016 11/08/2016		
Arsenic	mg/kg	151618-11	6 5 RPD:18		
Cadmium	mg/kg	151618-11	<0.4 <0.4		
Chromium	mg/kg	151618-11	15 15 RPD:0		
Copper	mg/kg	151618-11	29 30 RPD:3		
Lead	mg/kg	151618-11	15 14 RPD:7		
Mercury	mg/kg	151618-11	<0.1 <0.1		
Nickel	mg/kg	151618-11	12 12 RPD:0		
Zinc	mg/kg	151618-11	55 55 RPD:0		
QUALITY CONTROL Misc Soil - Inorg	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	LCS-1	11/08/2016
Date analysed	-	[NT]	[NT]	LCS-1	11/08/2016
Total Phenolics (as Phenol)	mg/kg	[NT]	[NT]	LCS-1	105%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
VOCs in soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	151618-9	11/08/2016
Date analysed	-	[NT]	[NT]	151618-9	12/08/2016
Dichlorodifluoromethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Chloromethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	mg/kg	[NT]	[NT]	[NR]	[NR]
Bromomethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Chloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	mg/kg	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	mg/kg	[NT]	[NT]	[NR]	[NR]
trans-1,2-dichloroethene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,1-dichloroethane	mg/kg	[NT]	[NT]	151618-9	88%
cis-1,2-dichloroethene	mg/kg	[NT]	[NT]	[NR]	[NR]
bromochloromethane	mg/kg	[NT]	[NT]	[NR]	[NR]
chloroform	mg/kg	[NT]	[NT]	151618-9	88%
2,2-dichloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dichloroethane	mg/kg	[NT]	[NT]	151618-9	81%
1,1,1-trichloroethane	mg/kg	[NT]	[NT]	151618-9	111%
1,1-dichloropropene	mg/kg	[NT]	[NT]	[NR]	[NR]
Cyclohexane	mg/kg	[NT]	[NT]	[NR]	[NR]
carbon tetrachloride	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
dibromomethane	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dichloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
trichloroethene	mg/kg	[NT]	[NT]	151618-9	81%

	Client Reference: 9528						
QUALITY CONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery		
VOCs in soil			Base + Duplicate + % RPD				
bromodichloromethane	mg/kg	[NT]	[NT]	151618-9	86%		
trans-1,3-dichloropropene	mg/kg	[NT]	[NT]	[NR]	[NR]		
cis-1,3-dichloropropene	mg/kg	[NT]	[NT]	[NR]	[NR]		
1,1,2-trichloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]		
Toluene	mg/kg	[NT]	[NT]	[NR]	[NR]		
1,3-dichloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]		
dibromochloromethane	mg/kg	[NT]	[NT]	151618-9	94%		
1,2-dibromoethane	mg/kg	[NT]	[NT]	[NR]	[NR]		
tetrachloroethene	mg/kg	[NT]	[NT]	151618-9	87%		
1,1,1,2-tetrachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]		
chlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]		
Ethylbenzene	mg/kg	[NT]	[NT]	[NR]	[NR]		
bromoform	mg/kg	[NT]	[NT]	[NR]	[NR]		
m+p-xylene	mg/kg	[NT]	[NT]	[NR]	[NR]		
styrene	mg/kg	[NT]	[NT]	[NR]	[NR]		
1,1,2,2-tetrachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]		
o-Xylene	mg/kg	[NT]	[NT]	[NR]	[NR]		
1,2,3-trichloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]		
isopropylbenzene	mg/kg	[NT]	[NT]	[NR]	[NR]		
bromobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]		
n-propyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]		
2-chlorotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]		
4-chlorotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]		
1,3,5-trimethyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]		
tert-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]		
1,2,4-trimethyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]		
1,3-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]		
sec-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]		
1,4-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]		
4-isopropyl toluene	mg/kg	[NT]	[NT]	[NR]	[NR]		
1,2-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]		
n-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]		
1,2-dibromo-3- chloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]		
1,2,4-trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]		
hexachlorobutadiene	mg/kg	[NT]	[NT]	[NR]	[NR]		
1,2,3-trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]		
Surrogate Dibromofluorometha	%	[NT]	[NT]	151618-9	103%		
<i>Surrogate</i> aaa- Trifluorotoluene	%	[NT]	[NT]	151618-9	85%		
Surrogate Toluene-d8	%	[NT]	[NT]	151618-9	94%		
Surrogate 4- Bromofluorobenzene	%	[NT]	[NT]	151618-9	106%		

		Client Referen	ce: 9528		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	151618-9	11/08/2016
Date analysed	-	[NT]	[NT]	151618-9	12/08/2016
TRHC6 - C9	mg/kg	[NT]	[NT]	151618-9	91%
TRHC6 - C10	mg/kg	[NT]	[NT]	151618-9	91%
Benzene	mg/kg	[NT]	[NT]	151618-9	84%
Toluene	mg/kg	[NT]	[NT]	151618-9	80%
Ethylbenzene	mg/kg	[NT]	[NT]	151618-9	93%
m+p-xylene	mg/kg	[NT]	[NT]	151618-9	99%
o-Xylene	mg/kg	[NT]	[NT]	151618-9	97%
naphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%	[NT]	[NT]	151618-9	85%
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	151618-9	11/08/2016
Date analysed	-	[NT]	[NT]	151618-9	12/08/2016
TRHC 10 - C14	mg/kg	[NT]	[NT]	151618-9	127%
TRHC 15 - C28	mg/kg	[NT]	[NT]	151618-9	119%
TRHC 29 - C 36	mg/kg	[NT]	[NT]	151618-9	106%
TRH>C10-C16	mg/kg	[NT]	[NT]	151618-9	127%
TRH>C16-C34	mg/kg	[NT]	[NT]	151618-9	119%
TRH>C34-C40	mg/kg	[NT]	[NT]	151618-9	106%
Surrogate o-Terphenyl	%	[NT]	[NT]	151618-9	83%
QUALITY CONTROL PAHs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + % RPD	Spike Sm#	Spike % Recover
Date extracted	_	[NT]	[NT]	151618-9	11/08/2016
Date analysed	-	[NT]	[NT]	151618-9	11/08/2016
Naphthalene	- ma/ka	[NT]	[NT]	151618-9	112%
Acenaphthylene	mg/kg mg/kg	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	[NT]	[NT]	151618-9	115%
Phenanthrene		[NT]	[NT]	151618-9	126%
Anthracene	mg/kg mg/kg	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	[NT]	[NT]	נאאן 151618-9	נאר <u>ק</u> 112%
Pyrene	mg/kg	[NT]	[NT]	151618-9	112%
Benzo(a)anthracene				[NR]	[NR]
	mg/kg	[NT]	[NT]	נאא <u>ן</u> 151618-9	
	mg/kg	[NT]	[NT]		100%
Benzo(b,j+k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	[NT]	[NT]	151618-9	113%
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]

Client Reference: 9528							
QUALITY CONTROL PAHs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery		
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]		
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	151618-9	92%		
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery		
Date prepared	-	[NT]	[NT]	151618-9	11/08/2016		
Date analysed	-	[NT]	[NT]	151618-9	11/08/2016		
Arsenic	mg/kg	[NT]	[NT]	151618-9	85%		
Cadmium	mg/kg	[NT]	[NT]	151618-9	93%		
Chromium	mg/kg	[NT]	[NT]	151618-9	91%		
Copper	mg/kg	[NT]	[NT]	151618-9	96%		
Lead	mg/kg	[NT]	[NT]	151618-9	91%		
Mercury	mg/kg	[NT]	[NT]	151618-9	113%		
Nickel	mg/kg	[NT]	[NT]	151618-9	87%		
Zinc	mg/kg	[NT]	[NT]	151618-9	88%		
QUALITY CONTROL Misc Soil - Inorg	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery		
Date prepared	-	[NT]	[NT]	151618-3	11/08/2016		
Date analysed	-	[NT]	[NT]	151618-3	11/08/2016		
Total Phenolics (as Phenol)	mg/kg	[NT]	[NT]	151618-3	100%		

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Getex Pty Ltd
Attention	Justin Thompson Laing

Sample Login Details	
Your Reference	9528
Envirolab Reference	151618
Date Sample Received	10/08/2016
Date Instructions Received	10/08/2016
Date Results Expected to be Reported	17/08/2016

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	11 soils
Turnaround Time Requested	Standard
Temperature on receipt (°C)	2.8
Cooling Method	Ice
Sampling Date Provided	YES

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au

Sample and Testing Details on following page

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	VOCs in soil	vTRH(C6- C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Acid Extractable metals in soil	Total Phenolics (as Phenol)
9528/BH14-0.2-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
9528/BH14-2.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
9528/BH14-4.0		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
9528/BH15-0.2-0.3		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
9528/BH15-1.0		\checkmark	\checkmark	\checkmark	\checkmark	
9528/BH15-3.0		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
9528/BH16-0.2-0.3		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
9528/BH16-1.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
9528/BH16-3.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
9528/BH1-1.0a		\checkmark	\checkmark	\checkmark	\checkmark	
9528/BH14-0.2-0.3		\checkmark	\checkmark	\checkmark	\checkmark	

GETEX	Address: Phone: Facsimile: Email:	Getex Pty Ltd 2.02, Building 3 35 Waterloo R MACQUARIE P (02) 9889 2488 (02) 9889 2499 help@getex.cc Justin Thomps	oad ARK 3 9 0m.a	NS' u .ain	W 2						nbie	ent 1	F	Ph acsi	To Iress	o: Ei s: 1: Cl e: (C	n o nvirc 2 Asl HAT: 02) 9 02) 9	olab hley SWC 910 910	Ser 9 Str 2000 0 620 0 629	vice eet NS 00 99	s P	ty L Da 206 Re Te Co Se	ate F Te leceinemp: colinecur	ved to	ived ived by: DAm elice	hatsu Ph: Dibier	12 (02) 51 8 t c cen/l	None	1 ey : V 200 0 620	St 67 00	Pro	oject	Nu Nu	ımb ımb T/	er: er: AT:	10/ 575 952 5 d	51 28 ays			8/1	116		17	5.0C
			1																				*									_												
		Container							Sin	gle A	naly	tes							_			So	oil	*			Com	bos a	nd N	lon-S	tand	ard A	Analy	tes										
Envirolab Barcode Number	Getex Sample Number	Plastic Tube – PT Bag – B Petri Dish – PD Plastic Bottle – PB Glass Jar – GJ Glass Bottle – GB Glass Vial - GV	ткн/втех 👞	PAH Routine	PAH Low	OCP	PCB	Lead	Metals				TCLP Prep	eachable PAH	o Leachable Metals	DCs			NEPM Soil Char Suite	Combination 1m	Combination 3	Combination 4	Combination 5b																				-	
)	9528/BH14/0.2-0.3	GJ		-	-		1	-	4			-	-	-		1			-		-	1					+		+	+								+	+		+	\mathbf{T}	1	
2	9528/BH14/2.0	GJ			-								-		+	1	\square				1		+		-		-	+	+	+								1	+		+	+		
3	9528/BH14/4.0	GJ			+	+	+				1		1		+	+				-		1	1				+	+	+	+							-	+	+	+	+		1	
ú	9528/BH15/0.2-0.3	GJ			1	+					1		+		+	+				+		1						+												+	+	T		
5	9528/BH15/1.0	GJ		1	1	+	T	1			1	+	+	+	+	\top					1	\top	+	-				+	+	1	\top					\square	+	+	+	+	\top	\top	1	
6	9528/BH15/3.0	GJ			1		\top					1	+	+		T				+		1	+	+				+	+								1	1		1	T		1	
7	9528/BH16/0.2-0.3	GJ					\top				1				1	T						1						\top	T	T		Π					1	1	1			T	1	
8	9528/BH16/1.0	GJ					\top				1		1		1	1					1							\top	1	1							1	1	1				1	
9	9528/BH16/3.0	GJ				\top						1		\top		1						1	\top					+	T	T													1	
(0)	9528/BH1/1.0a	GJ			1		\top		\square		1	+	+	+					10		1	1						-	\top	T		Π					1	1		+		\top	1	
, il	9528/BH14/0.2-0.3	GJ			1	1	\top				+	+	+	+		1		1			1	+	1					1	T	T	T	Н					1	1	+	\top	T		1	
	A	M					T					1	+	+	1					T	+	+	\top						T	T		Π											1	
					1		T					+	+	+	+	1		1		+	+	+	+	+				+	\top	T	1							1	+	+	T		1	
	N	0.000000		1	1							+	+	+	1					+	+	+	-						\top	T							1		1				1	
				1	1	-						1	+	+	1	T				+	1	+	1					1	T	T		Π									T		1	
		Total		1	1											4					5 (6					1		T								1						1	

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

151619

Client: Getex Pty Ltd

2.02, Building 2 Waterloo Business Park 35 Waterloo Rd North Ryde NSW 2113

Attention: J Thompson Laing

Sample log in details:

Your Reference:	9528		
No. of samples:	2 Waters		
Date samples received / completed instructions received	10/08/16	/	10/08/16

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. Please refer to the last page of this report for any comments relating to the results.

Report Details:	
Date results requested by: / Issue Date:	17/08/16 / 16/08/16
Date of Preliminary Report:	Not Issued
NATA accreditation number 2901. This document shall not	be reproduced except in full.
Accredited for compliance with ISO/IEC 17025 - Testing	Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

VOCs in water		454040.4
Our Reference: Your Reference	UNITS	151619-1 9528/WDT/W1
Tour Reference	-	9526/001/001
Type of sample		Water
Date extracted	-	11/08/2016
Date analysed	-	12/08/2016
Dichlorodifluoromethane	µg/L	<10
Chloromethane	µg/L	<10
Vinyl Chloride	µg/L	<10
Bromomethane	µg/L	<10
Chloroethane	µg/L	<10
Trichlorofluoromethane	µg/L	<10
1,1-Dichloroethene	µg/L	<1
Trans-1,2-dichloroethene	µg/L	<1
1,1-dichloroethane	µg/L	<1
Cis-1,2-dichloroethene	µg/L	<1
Bromochloromethane	µg/L	<1
Chloroform	µg/L	<1
2,2-dichloropropane	µg/L	<1
1,2-dichloroethane	µg/L	<1
1,1,1-trichloroethane	µg/L	<1
1,1-dichloropropene	µg/L	<1
Cyclohexane	µg/L	<1
Carbon tetrachloride	µg/L	<1
Benzene	µg/L	<1
Dibromomethane	µg/L	<1
1,2-dichloropropane	µg/L	<1
Trichloroethene	µg/L	<1
Bromodichloromethane	µg/L	<1
trans-1,3-dichloropropene	µg/L	<1
cis-1,3-dichloropropene	µg/L	<1
1,1,2-trichloroethane	µg/L	<1
Toluene	µg/L	<1
1,3-dichloropropane	µg/L	<1
Dibromochloromethane	µg/L	<1
1,2-dibromoethane	µg/L	<1
Tetrachloroethene	µg/L	<1
1,1,1,2-tetrachloroethane	µg/L	<1
Chlorobenzene	µg/L	<1
Ethylbenzene	µg/L	<1
Bromoform	µg/L	<1
m+p-xylene	µg/L	<2
Styrene	µg/L	<1
1,1,2,2-tetrachloroethane	µg/L	<1
o-xylene	µg/L	<1
1,2,3-trichloropropane	µg/L	<1

Envirolab Reference:	151619
Revision No:	R 00

VOCs in water		
Our Reference:	UNITS	151619-1
Your Reference		9528/WDT/W1
	-	
Type of sample		Water
Isopropylbenzene	µg/L	<1
Bromobenzene	µg/L	<1
n-propyl benzene	µg/L	<1
2-chlorotoluene	µg/L	<1
4-chlorotoluene	µg/L	<1
1,3,5-trimethyl benzene	µg/L	<1
Tert-butyl benzene	µg/L	<1
1,2,4-trimethyl benzene	µg/L	<1
1,3-dichlorobenzene	µg/L	<1
Sec-butyl benzene	µg/L	<1
1,4-dichlorobenzene	µg/L	<1
4-isopropyl toluene	µg/L	<1
1,2-dichlorobenzene	µg/L	<1
n-butyl benzene	µg/L	<1
1,2-dibromo-3-chloropropane	µg/L	<1
1,2,4-trichlorobenzene	µg/L	<1
Hexachlorobutadiene	µg/L	<1
1,2,3-trichlorobenzene	µg/L	<1
Surrogate Dibromofluoromethane	%	103
Surrogate toluene-d8	%	79
Surrogate 4-BFB	%	89

vTRH(C6-C10)/BTEXN in Water Our Reference: Your Reference	UNITS	151619-1 9528/WDT/W1	151619-2 9528/WDT/W1a	
Type of sample		Water	Water	
Date extracted	-	11/08/2016	12/08/2016	
Date analysed	-	12/08/2016	12/08/2016	
TRHC6 - C9	µg/L	<10	<10	
TRHC6 - C10	µg/L	<10	<10	
TRHC6 - C10 less BTEX (F1)	µg/L	<10	<10	
Benzene	µg/L	<1	<1	
Toluene	µg/L	<1	<1	
Ethylbenzene	µg/L	<1	<1	
m+p-xylene	µg/L	<2	<2	
o-xylene	µg/L	<1	<1	
Naphthalene	µg/L	<1	<1	
Surrogate Dibromofluoromethane	%	103	109	
Surrogate toluene-d8	%	79	96	
Surrogate 4-BFB	%	89	97	

svTRH (C10-C40) in Water			
Our Reference:	UNITS	151619-1	151619-2
Your Reference		9528/WDT/W1	9528/WDT/W1a
	-		
Type of sample		Water	Water
Date extracted	-	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016
TRHC 10 - C14	µg/L	<50	<50
TRHC 15 - C28	µg/L	<100	<100
TRHC₂ - C₃	µg/L	<100	<100
TRH>C10 - C16	µg/L	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50	<50
TRH>C16 - C34	µg/L	<100	<100
TRH>C34 - C40	µg/L	<100	<100
Surrogate o-Terphenyl	%	80	86

PAHs in Water - Low Level			
Our Reference:	UNITS	151619-1	151619-2
Your Reference		9528/WDT/W1	9528/WDT/W1a
Type of sample		Water	Water
Date extracted	-	11/08/2016	11/08/2016
Date analysed	-	11/08/2016	11/08/2016
Naphthalene	µg/L	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5
Total +ve PAH's	µg/L	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	75	70

Total Phenolics in Water Our Reference: Your Reference	UNITS	151619-1 9528/WDT/W1	151619-2 9528/WDT/W1a
Type of sample		Water	Water
Date extracted	-	12/08/2016	12/08/2016
Date analysed	-	12/08/2016	12/08/2016
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05

HM in water - dissolved			
Our Reference:	UNITS	151619-1	151619-2
Your Reference		9528/WDT/W1	9528/WDT/W1a
Type of sample		Water	Water
Date prepared	-	12/08/2016	12/08/2016
Date analysed	-	12/08/2016	12/08/2016
Arsenic-Dissolved	µg/L	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1
Copper-Dissolved	µg/L	2	2
Lead-Dissolved	µg/L	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05
Nickel-Dissolved	µg/L	1	1
Zinc-Dissolved	µg/L	4	5

Miscellaneous Inorganics			
Our Reference:	UNITS	151619-1	151619-2
Your Reference		9528/WDT/W1	9528/WDT/W1a
	-		
Type of sample		Water	Water
Date prepared	-	10/08/2016	10/08/2016
Date analysed	-	10/08/2016	10/08/2016
рН	pH Units	7.3	7.3
Electrical Conductivity	µS/cm	560	560

MethodID	MethodologySummary
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA latest edition 2510 and Rayment & Lyons.

QUALITYCONTROL	UNITS	PQL	METHOD	ce: 9 Blank
QUALITY CONTROL	UNITS	FQL		DIANK
			_	4.4.10.0.10
Date extracted	-			11/08/2 016
Date analysed	-			12/08/2 016
Dichlorodifluoromethane	µg/L	10	Org-013	<10
Chloromethane	μg/L	10	Org-013	<10
Vinyl Chloride	μg/L	10	Org-013	<10
Bromomethane	μg/L	10	Org-013	<10
Chloroethane	μg/L	10	Org-013	<10
Trichlorofluoromethane	µg/L	10	Org-013	<10
1,1-Dichloroethene	μg/L	1	Org-013	<1
Trans-1,2-	μg/L	1	Org-013	<1
dichloroethene	P9/2	•	olg olo	
1,1-dichloroethane	µg/L	1	Org-013	<1
Cis-1,2-dichloroethene	µg/L	1	Org-013	<1
Bromochloromethane	µg/L	1	Org-013	<1
Chloroform	µg/L	1	Org-013	<1
2,2-dichloropropane	µg/L	1	Org-013	<1
1,2-dichloroethane	µg/L	1	Org-013	<1
1,1,1-trichloroethane	µg/L	1	Org-013	<1
1,1-dichloropropene	µg/L	1	Org-013	<1
Cyclohexane	µg/L	1	Org-013	<1
Carbon tetrachloride	µg/L	1	Org-013	<1
Benzene	μg/L	1	Org-013	<1
Dibromomethane	μg/L	1	Org-013	<1
1,2-dichloropropane	μg/L	1	Org-013	<1
Trichloroethene	μg/L	1	Org-013	<1
Bromodichloromethane	μg/L	1	Org-013	<1
trans-1,3- dichloropropene	μg/L	1	Org-013	<1
cis-1,3-dichloropropene	µg/L	1	Org-013	<1
1,1,2-trichloroethane	μg/L	1	Org-013	<1
Toluene	μg/L	1	Org-013	<1
1,3-dichloropropane	μg/L	1	Org-013	<1
Dibromochloromethane	μg/L	1	Org-013	<1
1,2-dibromoethane	μg/L	1	Org-013	<1
Tetrachloroethene	μg/L	1	Org-013	<1
1,1,1,2- tetrachloroethane	μg/L	1	Org-013	<1
Chlorobenzene	µg/L	1	Org-013	<1
Ethylbenzene	μg/L	1	Org-013	<
Bromoform	μg/L	1	Org-013	<
m+p-xylene	μg/L	2	Org-013	<2
Styrene	μg/L	1	Org-013	<
1,1,2,2-	μg/L	1	Org-013	<
tetrachloroethane	P9'L			
o-xylene	µg/L	1	Org-013	<1
1,2,3-trichloropropane	µg/L	1	Org-013	<1

			-
ent	Refe	erence	: 9

		Clie	nt Referenc	e: 95
QUALITYCONTROL VOCs in water	UNITS	PQL	METHOD	Blank
Isopropylbenzene	µg/L	1	Org-013	<1
Bromobenzene	μg/L	1	Org-013	<1
n-propyl benzene	μg/L	1	Org-013	<1
2-chlorotoluene	µg/L	1	Org-013	<1
4-chlorotoluene	µg/L	1	Org-013	<1
1,3,5-trimethyl benzene	µg/L	1	Org-013	<1
Tert-butyl benzene	µg/L	1	Org-013	<1
1,2,4-trimethyl benzene	µg/L	1	Org-013	<1
1,3-dichlorobenzene	µg/L	1	Org-013	<1
Sec-butyl benzene	µg/L	1	Org-013	<1
1,4-dichlorobenzene	µg/L	1	Org-013	<1
4-isopropyl toluene	µg/L	1	Org-013	<1
1,2-dichlorobenzene	µg/L	1	Org-013	<1
n-butyl benzene	µg/L	1	Org-013	<1
1,2-dibromo-3- chloropropane	µg/L	1	Org-013	<1
1,2,4-trichlorobenzene	µg/L	1	Org-013	<1
Hexachlorobutadiene	µg/L	1	Org-013	<1
1,2,3-trichlorobenzene	µg/L	1	Org-013	<1
Surrogate Dibromofluoromethane	%		Org-013	95
Surrogate toluene-d8	%		Org-013	86
Surrogate 4-BFB	%		Org-013	76

			ent Referenc		5 28 7			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank				
vTRH(C6-C10)/BTEXNin Water								
	_							
Date extracted	-			11/08/2				
				016				
Date analysed	-			12/08/2 016				
TRHC6 - C9	µg/L	10	Org-016	<10				
TRHC6 - C10	µg/L	10	Org-016	<10				
Benzene	µg/L	1	Org-016	<1				
Toluene	µg/L	1	Org-016	<1				
Ethylbenzene	µg/L	1	Org-016	<1				
m+p-xylene	μg/L	2	Org-016	~2				
o-xylene	µg/L	1	Org-016	<1				
Naphthalene	µg/L	1	Org-013	<1				
	μg/L %		Org-015 Org-016	95				
Surrogate Dibromofluoromethane			-					
Surrogate toluene-d8	%		Org-016	86				
Surrogate 4-BFB	%		Org-016	76				
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Water						Base II Duplicate II % RPD		
Date extracted	-			11/08/2	[NT]	[NT]	LCS-W1	11/08/201
				016				
Date analysed	-			11/08/2 016	[NT]	[NT]	LCS-W1	11/08/201
TRHC 10 - C14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	91%
TRHC 15 - C28	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	96%
TRHC ₂₉ - C ₃₆	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	102%
TRH>C10 - C16	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	91%
TRH>C16 - C34	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	96%
TRH>C34 - C40	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	102%
	µg/∟ %	100	Org-003	78			LCS-W1	65%
			-		[NT]	[NT]		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water - Low Level						Base II Duplicate II % RPD		
Date extracted	_			11/08/2	[NT]	[NT]	LCS-W1	11/08/201
	_			016				
Date analysed	-			11/08/2 016	[NT]	[NT]	LCS-W1	11/08/201
Naphthalene	µg/L	0.2	Org-012	<0.2	[NT]	[NT]	LCS-W1	82%
Acenaphthylene	µg/L	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	µg/L	0.1	Org-012	<0.1	[NT]	[NT]	LCS-W1	109%
Phenanthrene	μg/L	0.1	Org-012	<0.1	[NT]	[NT]	LCS-W1	98%
Anthracene	µg/L	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
			_					81%
			_					86%
-			_					[NR]
Fluoranthene Pyrene Benzo(a)anthracene	μg/L μg/L μg/L	0.1 0.1 0.1	Org-012 Org-012 Org-012	<0.1 <0.1 <0.1	[NT] [NT] [NT]	[TI] [TI] [TI]	LCS-W1 LCS-W1 [NR]	

Envirolab Reference:	151619
Revision No:	R 00

		Clie	ent Referenc	e: 98	528			
QUALITYCONTROL PAHs in Water - Low Level	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Chrysene	µg/L	0.1	Org-012	<0.1	[NT]	[NT]	LCS-W1	84%
Benzo(b,j +k)fluoranthene	µg/L	0.2	Org-012	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	0.1	Org-012	<0.1	[NT]	[NT]	LCS-W1	90%
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	µg/L	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
S <i>urrogate p</i> -Terphenyl- d14	%		Org-012	92	[NT]	[TN]	LCS-W1	88%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Water						Base II Duplicate II % RPD		
Date extracted	-			12/08/2 016	[NT]	[NT]	LCS-W1	12/08/2016
Date analysed	-			12/08/2 016	[NT]	[NT]	LCS-W1	12/08/2016
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	[NT]	[NT]	LCS-W1	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank				
HM in water - dissolved								
Date prepared	-			12/08/2 016				
Date analysed	-			12/08/2 016				
Arsenic-Dissolved	µg/L	1	Metals-022 ICP-MS	<1				
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1				
Chromium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1				
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1				
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1				
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05				
Nickel-Dissolved	µg/L	1	Metals-022 ICP-MS	<1				
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1				

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	528 Duplicate	Duplicate results	Spike Sm#	Spike %				
				DIGI IN	Sm#		Opine Offi#	Recovery				
Miscellaneous Inorganics						Base II Duplicate II % RPD						
Date prepared	-			10/08/2 016	[NT]	[NT]	LCS-W1	10/08/201				
Date analysed	-			10/08/2 016	[NT]	[NT]	LCS-W1	10/08/2016				
pН	pHUnits		Inorg-001	[NT]	[NT] [NT] [N		LCS-W1	101%				
Electrical Conductivity	µS/cm	1	Inorg-002	<1	[NT]	[NT]	LCS-W1	100%				
QUALITYCONTROL	UNITS	3	Dup.Sm#		Duplicate	Spike Sm#	Spike % Reco	overy				
VOCs in water				Base+I	Duplicate + %RI	PD						
Date extracted	-		[NT]		[NT]	LCS-W2	11/08/201	6				
Date analysed	-		[NT]		[NT]	LCS-W2	12/08/201	6				
Dichlorodifluoromethane	µg/L		[NT]		[NT]	[NR]	[NR]					
Chloromethane	µg/L		[NT]		[NT]	[NR]	[NR]					
Vinyl Chloride	µg/L		[NT]		[NT]	[NR]	[NR]					
Bromomethane	µg/L		[NT]		[NT]	[NR]	[NR]					
Chloroethane	µg/L		[NT]		[NT]	[NR]	[NR]					
Trichlorofluoromethane	µg/L		[NT]		[NT]	[NR]	[NR]					
1,1-Dichloroethene	µg/L		[NT]		[NT]	[NR]	[NR]					
Trans-1,2-dichloroethene	µg/L		[NT]		[NT]	[NR]	[NR]					
1,1-dichloroethane	µg/L		[NT]		[NT]	LCS-W2	99%					
Cis-1,2-dichloroethene	µg/L		[NT]		[NT]	[NR]	[NR]					
Bromochloromethane	µg/L		[NT]		[NT]	[NR]	[NR]					
Chloroform	µg/L		[NT]		[NT]	LCS-W2	102%					
2,2-dichloropropane	µg/L		[NT]		[NT]	[NR]	[NR]					
1,2-dichloroethane	µg/L		[NT]		[NT]	LCS-W2	99%					
1,1,1-trichloroethane	µg/L		[NT]		[NT]	LCS-W2	99%					
1,1-dichloropropene	µg/L		[NT]		[NT]	[NR]	[NR]					
Cyclohexane	µg/L		[NT]		[NT]	[NR]	[NR]					
Carbon tetrachloride	μg/L		[NT]		[NT]	[NR]	[NR]					
Benzene	μg/L		[NT]		[NT]	[NR]	[NR]					
Dibromomethane	μg/L		[NT]		[NT]	[NR]	[NR]					
1,2-dichloropropane	μg/L		[NT]		[NT] [NR]		[NR]					
Trichloroethene	μg/L		[NT]		[NT]	LCS-W2	117%					
Bromodichloromethane	μg/L		[NT]		[NT]	LCS-W2	99%					
trans-1,3-dichloropropene			[NT]		[NT]	[NR]	[NR]					
cis-1,3-dichloropropene	μg/L		[NT]		[NT]	[NR]	[NR]					
1,1,2-trichloroethane	μg/L		[NT]		[NT]	[NR]	[NR]					
Toluene	μg/L		[NT]		[NT]	[NR]	[NR]					
1,3-dichloropropane	μg/L		[NT]		[NT]	[NR]	[NR]					
Dibromochloromethane	μg/L		[NT]		[NT] [NR] [NT] LCS-W2		נאא <u>ן</u> 102%					
1,2-dibromoethane												
Tetrachloroethene	µg/L		[NT]		[NT]	[NR] LCS-W2	[NR] 97%					
	µg/L		[NT]		[NT]							
1,1,1,2-tetrachloroethane	µg/L		[NT]		[NT]	[NR]	[NR]					

		Client Referenc	e: 9528		
QUALITY CONTROL VOCs in water	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Chlorobenzene	µg/L	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	µg/L	[NT]	[NT]	[NR]	[NR]
Bromoform	µg/L	[NT]	[NT]	[NR]	[NR]
m+p-xylene	µg/L	[NT]	[NT]	[NR]	[NR]
Styrene	µg/L	[NT]	[NT]	[NR]	[NR]
1,1,2,2-tetrachloroethane	µg/L	[NT]	[NT]	[NR]	[NR]
o-xylene	µg/L	[NT]	[NT]	[NR]	[NR]
1,2,3-trichloropropane	µg/L	[NT]	[NT]	[NR]	[NR]
Isopropylbenzene	µg/L	[NT]	[NT]	[NR]	[NR]
Bromobenzene	µg/L	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	µg/L	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	µg/L	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	µg/L	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	µg/L	[NT]	[NT]	[NR]	[NR]
Tert-butyl benzene	µg/L	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	µg/L	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	µg/L	[NT]	[NT]	[NR]	[NR]
Sec-butyl benzene	µg/L	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	µg/L	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	µg/L	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	µg/L	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	µg/L	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	µg/L	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	µg/L	[NT]	[NT]	[NR]	[NR]
Hexachlorobutadiene	µg/L	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	µg/L	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%	[NT]	[NT]	LCS-W2	104%
Surrogate toluene-d8	%	[NT]	[NT]	LCS-W2	108%
Surrogate 4-BFB	%	[NT]	[NT]	LCS-W2	91%

		Client Reference	e: 9528		
QUALITYCONTROL vTRH(C6-C10)/BTEXNin Water	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	LCS-W2	11/08/2016
Date analysed	-	[NT]	[NT]	LCS-W2	12/08/2016
TRHC6 - C9	µg/L	[NT]	[NT]	LCS-W2	87%
TRHC6 - C10	µg/L	[NT]	[NT]	LCS-W2	87%
Benzene	µg/L	[NT]	[NT]	LCS-W2	95%
Toluene	µg/L	[NT]	[NT]	LCS-W2	97%
Ethylbenzene	µg/L	[NT]	[NT]	LCS-W2	80%
m+p-xylene	µg/L	[NT]	[NT]	LCS-W2	81%
o-xylene	µg/L	[NT]	[NT]	LCS-W2	86%
Naphthalene	µg/L	[NT]	[NT]	[NR]	[NR]
Surrogate Dibromofluoromethane	%	[NT]	[NT]	LCS-W2	104%
Surrogate toluene-d8	%	[NT]	[NT]	LCS-W2	108%
Surrogate 4-BFB	%	[NT]	[NT]	LCS-W2	91%
QUALITY CONTROL HM in water - dissolved	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	LCS-W5	12/08/2016
Date analysed	-	[NT]	[NT]	LCS-W5	12/08/2016
Arsenic-Dissolved	µg/L	[NT]	[NT]	LCS-W5	96%
Cadmium-Dissolved	µg/L	[NT]	[NT]	LCS-W5	102%
Chromium-Dissolved	µg/L	[NT]	[NT]	LCS-W5	97%
Copper-Dissolved	µg/L	[NT]	[NT]	LCS-W5	100%
Lead-Dissolved	µg/L	[NT]	[NT]	LCS-W5	107%
Mercury-Dissolved	µg/L	[NT]	[NT]	LCS-W5	104%
Nickel-Dissolved	µg/L	[NT]	[NT]	LCS-W5	95%
Zinc-Dissolved	µg/L	[NT]	[NT]	LCS-W5	102%

Report Comments: METALS_WLL_8_D: Dissolved Metals: no preserved sample was received, therefore the unpreserved sample was filtered through 0.45um filter at the lab. Note: there is a possibility some elements may be underestimated.

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Getex Pty Ltd
Attention	J Thompson Laing

Sample Login Details	
Your Reference	9528
Envirolab Reference	151619
Date Sample Received	10/08/2016
Date Instructions Received	10/08/2016
Date Results Expected to be Reported	17/08/2016

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	2 Waters
Turnaround Time Requested	Standard
Temperature on receipt (°C)	2.0
Cooling Method	lce
Sampling Date Provided	YES

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au

Sample and Testing Details on following page

Sample Id	VOCs in water	vTRH(C6- C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water - Low Level	Total Phenolics in Water	HM in water - dissolved	Electrical Conductivity	Hd
9528/WDT/W1	1	✓	>	1	1	1	1	✓
9528/WDT/W1a		✓	✓	1	1	1	1	✓

GETEX	Address: Phone: Facsimile: Email: Attention:	: Getex Pty Ltd : 2.02, Building : 35 Waterloo R MACQUARIE P : (02) 9889 2488 : (02) 9889 2499 : help@getex.cc : Justin Thomps	oad ARK 3 om.a on -l	(NS au Lain	W 2 Ig Sam	2113	Rec	ceiv	ed a	it Ai		ent		Fac	ddro Pho csim	To: ess: one:	Env 12 CH (02	virol Ash ATS 2) 99 2) 99	ab s ley : WO 10 10	Serv Stre OD 6200 6299	ices et NSN D	s Pty W 20	067		Jo Da Tim Rec Ten Coc S ec	te R ne R ceive np: (pling curity	o: eccivite	/ed: ved: /: Ami	hats Ph. I Ph. I Ph. Dient Dient Dient Dient	1. (02) (8/ 1.8	2 As NS 991		St 67 00 der ect	Nun Nun	nbe TA1	r: 5 r: 9 T: 5	751 528 Da	1 B I ys			8	([(D	18	200
Notes:	Suite of 8 Metal	s, Filter bef	ore	or	ral,	ysis	of	M	et	ali	>														2																		-		
		Container	F	_	_			C ¹								_						١	Wate	er																					
Envirolab Barcode Number	Getex Sample Number	Plastic Tube – PT Bag – B Petri Dish – PD Plastic Bottle – PB Glass Jar – GJ Glass Bottle – GB Glass Vial - GV	TRH/BTEX	PAH Routine	PAH Low	OCP		Sing	' Metals	lics		ab Filtration			VOCs		Combination 4L									Co	mbo	and	Non	Star	dard	d Ana	alytes	5											
1	9528/WDT/W1	2xGV, PB, GB	Ξ.	7d	1d	ŏ	5 6	Le l	4	P	3	La	<u>ы</u> 1	Hd 1	3		<u> </u>	+	+	+	+	+	+	-	$\left \right $	+	-	+	+	-			+	+	+	+	+	+	+	+	+	\vdash			
2	9528/WDT/W1a	2xGV, PB, GB		\vdash	+	+	+	+	\vdash				1	1	-		1	-	+	+	+	+	+		$\left \right $	+	-	+	+	+			+	+	+	+	+	+	+	+	+				
		1911		\vdash	+	+	+	1	-									-	-	-	-	-				_	-	-	-				_	_	-	-	+	-	-	-	+		-		
			\vdash	\vdash	+	+	+	+	+	-			_	-	-	\vdash	\square	-	+	+	-	-	-			-	-	+	+	-		-	+	-	+	+	+	+	+	-	+	\vdash	_		
				\vdash	+	+	+	+		-				-		\square		-	+	+	+	+	-			-	-	+	+	-		-	-	-	+	+	+	+	+	+	+	\square	_		
				\top	+	+	+	+						-				-	+		+	+				+	+	+	+	+			+	-	+	1	+	+	+	-	+	H	-		
				\square	+	+	-	1										_	_							_	_	-	-			_	-	-	-	-	-	+		-	+	Ц			
				\vdash	+	+	+	+	-				_			H	\vdash	-	+	+	-	+				+	-	+	+	-			+	+	+	+	+	+	+	+	+	H	_		
			\square	+	+	+	+	+	+							\square	\vdash	+	+	+	-	+				+	+	+	+	-		-	+	+	+	+	+	+	+	+	+	H	-		
				+	+	+	+									Η	\vdash	+	+	1	-	1				1		+	1			-		+	+	-	+	+	1		-	H	-		
		Total											2	2	1		2																												

Getex Pty Ltd Suite 2.02 Building 2 Waterloo Business Park 35 Macquarie Park NSW 2113

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Justin Thompson-Laing

Report Project name Received Date **511363-S** 9528 Aug 10, 2016

Client Sample ID Sample Matrix			9528/BH1/1.0 Soil	9528/BH14/0.2- 0.3 Soil
Eurofins mgt Sample No.			S16-Au10576	S16-Au10577
Date Sampled			Not Provided	Not Provided
•		Linit	Not i rovided	Not i Tovided
Test/Reference Total Recoverable Hydrocarbons - 1999 NEPM	LOR Eractions	Unit		
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50
BTEX	50	піу/ку	< 30	< 50
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	75	72
Total Recoverable Hydrocarbons - 2013 NEPM		70		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20
Polycyclic Aromatic Hydrocarbons		1		
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5

Client Sample ID Sample Matrix			9528/BH1/1.0 Soil	9528/BH14/0.2- 0.3 Soil
Eurofins mgt Sample No.			S16-Au10576	S16-Au10577
Date Sampled			Not Provided	Not Provided
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons		-1		
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	109	106
p-Terphenyl-d14 (surr.)	1	%	125	116
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions			
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100
Heavy Metals				
Arsenic	2	mg/kg	16	5.8
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	22	14
Copper	5	mg/kg	17	23
Lead	5	mg/kg	11	15
Mercury	0.05	mg/kg	< 0.05	< 0.05
Nickel	5	mg/kg	8.1	11
Zinc	5	mg/kg	33	47
% Moisture	1	%	19	15

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B7A (filtered metals)			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Aug 12, 2016	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	Aug 11, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 11, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Sydney	Aug 12, 2016	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 12, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Metals M8	Sydney	Aug 11, 2016	28 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS			
% Moisture	Sydney	Aug 11, 2016	14 Day
- Method: LTM-GEN-7080 Moisture			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Getex Pty Ltd Address: Suite 2.02 Building 2 Waterloo Business Park 35 Macquarie Park NSW 2113			Order No.: Report #: Phone: Fax:		0	Received:Aug 10, 2016 3:29 PM511363Due:Aug 17, 201602 9889 2488Priority:5 Day02 9889 2499Contact Name:Justin Thompson-Laing					
Pro	oject Name:	9528									Eurofins mgt Analytical Services Manager : Nibha Vaidya
		Sa	mple Detail			Conductivity (at 25°C)	рН	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B7A (filtered metals)	
	ourne Laborato			.71							
	ney Laboratory					Х	Х	X	Х	Х	
	bane Laboratory		20794								_
Exte No	rnal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	9528/BH1/1.0	Not Provided		Soil	S16-Au10576			x	х		
2	9528/BH14/0.2 -0.3			Soil	S16-Au10577			x	х		
3	9528/WDT/W1 B	Not Provided		Water	S16-Au10578	х	х			х	
Test	Counts					1	1	2	2	1	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			Linits	Linito	0000
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank		•	· ·		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.05	0.05	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery		<u> </u>			

Те	st		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	tions						
TRH C6-C9			%	93		70-130	Pass	
TRH C10-C14			%	72		70-130	Pass	
LCS - % Recovery								
BTEX								
Benzene			%	94		70-130	Pass	
Toluene			%	101		70-130	Pass	
Ethylbenzene			%	101		70-130	Pass	
m&p-Xylenes			%	107		70-130	Pass	
o-Xylene			%	106		70-130	Pass	
Xylenes - Total			%	106		70-130	Pass	
LCS - % Recovery								
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	tions						
Naphthalene			%	89		70-130	Pass	
TRH C6-C10			%	88		70-130	Pass	
LCS - % Recovery								
Polycyclic Aromatic Hydrocarl	oons							
Acenaphthene			%	110		70-130	Pass	
Acenaphthylene			%	106		70-130	Pass	
Anthracene			%	114		70-130	Pass	
Benz(a)anthracene			%	95		70-130	Pass	
Benzo(a)pyrene			%	95		70-130	Pass	
Benzo(b&j)fluoranthene			%	114		70-130	Pass	
Benzo(g.h.i)perylene			%	123		70-130	Pass	
Benzo(k)fluoranthene			%	91		70-130	Pass	
Chrysene			%	114		70-130	Pass	
Dibenz(a.h)anthracene			%	113		70-130	Pass	
Fluoranthene			%	110		70-130	Pass	
Fluorene			%	109		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	115		70-130	Pass	
Naphthalene			%	108		70-130	Pass	
Phenanthrene			%	109		70-130	Pass	
Pyrene			%	106		70-130	Pass	
LCS - % Recovery			,,,	100		10100	1 400	
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	tions						
TRH >C10-C16			%	75		70-130	Pass	
LCS - % Recovery			,.			1		
Heavy Metals								
Arsenic			%	101		70-130	Pass	
Cadmium			%	104		70-130	Pass	
Chromium			%	111		70-130	Pass	
Copper			%	105		70-130	Pass	
Lead			%	104		70-130	Pass	
Mercury			%	109		70-130	Pass	
Nickel			%	117		70-130	Pass	
Zinc			%	116		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	tions		Result 1				
Naphthalene	S16-Au10605	NCP	%	70		70-130	Pass	
Spike - % Recovery								
Polycyclic Aromatic Hydrocarl	pons			Result 1				
Acenaphthene	S16-Au13832	NCP	%	118		70-130	Pass	
Acenaphthylene	S16-Au13832	NCP	%	117		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Anthracene	S16-Au13832	NCP	%	112			70-130	Pass	
Benz(a)anthracene	S16-Au13832	NCP	%	97			70-130	Pass	
Benzo(a)pyrene	S16-Au13832	NCP	%	115			70-130	Pass	
Benzo(b&j)fluoranthene	S16-Au13832	NCP	%	109			70-130	Pass	
Benzo(g.h.i)perylene	S16-Au13832	NCP	%	119			70-130	Pass	
Benzo(k)fluoranthene	S16-Au13832	NCP	%	111			70-130	Pass	
Chrysene	S16-Au13832	NCP	%	121			70-130	Pass	
Dibenz(a.h)anthracene	S16-Au13832	NCP	%	108			70-130	Pass	
Fluoranthene	S16-Au13832	NCP	%	107			70-130	Pass	
Fluorene	S16-Au13832	NCP	%	115			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S16-Au13832	NCP	%	117			70-130	Pass	
Naphthalene	S16-Au13832	NCP	%	120			70-130	Pass	
Phenanthrene	S16-Au13832	NCP	%	106			70-130	Pass	
Pyrene	S16-Au13832	NCP	%	106			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S16-Au10600	NCP	%	115			70-130	Pass	
Cadmium	S16-Au10313	NCP	%	94			70-130	Pass	
Chromium	S16-Au10600	NCP	%	99			70-130	Pass	
Copper	S16-Au10600	NCP	%	95			70-130	Pass	
Lead	S16-Au10600	NCP	%	116			70-130	Pass	
Mercury	S16-Au10313	NCP	%	115			70-130	Pass	
Nickel	S16-Au10600	NCP	%	113			70-130	Pass	
Zinc	S16-Au10313	NCP	%	102			70-130	Pass	
Spike - % Recovery			70	102	I		10 100	1 400	
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions		Result 1					
TRH C6-C9	S16-Au10577	CP	%	79			70-130	Pass	
TRH C10-C14	S16-Au10577	CP	%	72			70-130	Pass	
Spike - % Recovery	010 A010077		70	12			10 100	1 433	
BTEX				Result 1					
Benzene	S16-Au10577	CP	%	78			70-130	Pass	
Toluene	S16-Au10577	CP	%	78			70-130	Pass	
Ethylbenzene	S16-Au10577	CP	%	78			70-130	Pass	
m&p-Xylenes	S16-Au10577	CP	%	84			70-130	Pass	
o-Xylene	S16-Au10577	CP	%	82			70-130	Pass	
		CP							
Xylenes - Total	S16-Au10577	CP	%	83			70-130	Pass	
Spike - % Recovery				Deputed					
Total Recoverable Hydrocarbo			0/	Result 1			70.400	Dees	
TRH C6-C10	S16-Au10577	СР	%	79			70-130	Pass	
Spike - % Recovery		•		Devilled					
Total Recoverable Hydrocarbo			0/	Result 1			70.400		
TRH >C10-C16	S16-Au10577	CP	%	79			70-130	Pass	a
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					1				
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S16-Au10576	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S16-Au10576	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S16-Au10576	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S16-Au10576	CP	mg/kg	< 50	< 50	<1	30%	Pass	

Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S16-Au10576	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S16-Au10576	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S16-Au10576	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S16-Au10576	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S16-Au10576	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Xylenes - Total	S16-Au10576	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate	510-A010370		під/ку	< 0.5	< 0.5		5078	1 435	
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD	1		
Naphthalene	S16-Au10576	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S16-Au10576	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate		01	mg/ng	. 20	120		0070	1 400	
Polycyclic Aromatic Hydrocar	bons			Result 1	Result 2	RPD			
Acenaphthene	S16-Au10601	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S16-Au10601	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S16-Au10601	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S16-Au10601	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S16-Au10601	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&i)fluoranthene	S16-Au10601	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S16-Au10601	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S16-Au10601	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S16-Au10601	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S16-Au10601	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S16-Au10601	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S16-Au10601	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S16-Au10601	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S16-Au10601	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S16-Au10601	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S16-Au10601	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				•					
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S16-Au10576	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S16-Au10576	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S16-Au10576	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S16-Au10599	NCP	mg/kg	5.7	5.7	1.0	30%	Pass	
Cadmium	S16-Au10599	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S16-Au10599	NCP	mg/kg	16	8.3	61	30%	Fail	Q15
Copper	S16-Au10599	NCP	mg/kg	5.4	< 5	11	30%	Pass	
Lead	S16-Au10599	NCP	mg/kg	18	15	20	30%	Pass	
Mercury	S16-Au10599	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Nickel	S16-Au10599	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S16-Au10599	NCP	mg/kg	19	14	33	30%	Fail	Q15
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S16-Au07680	NCP	%	3.4	3.3	3.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	No
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Nibha Vaidya	Analytical Services Manager
Ivan Taylor	Senior Analyst-Metal (NSW)
Ryan Hamilton	Senior Analyst-Inorganic (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Getex Pty Ltd Suite 2.02 Building 2 Waterloo Business Park 35 Macquarie Park NSW 2113

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Justin Thompson-Laing

Report Project name Received Date **511363-W** 9528 Aug 10, 2016

Client Sample ID			9528/WDT/W1 B
Sample Matrix			Water
Eurofins mgt Sample No.			S16-Au10578
Date Sampled			Not Provided
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions		
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1
BTEX			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	81
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001

Client Sample ID Sample Matrix			9528/WDT/W1 B Water
Eurofins mgt Sample No.			S16-Au10578
Date Sampled			Not Provided
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons	1		
2-Fluorobiphenyl (surr.)	1	%	INT
p-Terphenyl-d14 (surr.)	1	%	76
Speciated Phenols			
2.4-Dichlorophenol	0.002	mg/L	< 0.002
2.4-Dimethylphenol	0.002	mg/L	< 0.002
2.4.5-Trichlorophenol	0.002	mg/L	< 0.002
2.4.6-Trichlorophenol	0.002	mg/L	< 0.002
Phenol	0.002	mg/L	< 0.002
2-Methylphenol (o-Cresol)	0.002	mg/L	< 0.002
3&4-Methylphenol (m&p-Cresol)	0.004	mg/L	< 0.004
2-Chlorophenol	0.002	mg/L	< 0.002
2-Nitrophenol	0.002	mg/L	< 0.002
4-Chloro-3-methylphenol	0.002	mg/L	< 0.002
Pentachlorophenol	0.01	mg/L	< 0.01
Phenol-d5 (surr.)	1	%	64
Total Recoverable Hydrocarbons - 2013 N	EPM Fractions		
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	0.1
TRH >C34-C40	0.1	mg/L	< 0.1
Conductivity (at 25°C)	1	uS/cm	660
рН	0.1	pH Units	7.1
Heavy Metals			
Arsenic (filtered)	0.001	mg/L	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001
Copper (filtered)	0.001	mg/L	0.002
Lead (filtered)	0.001	mg/L	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001
Nickel (filtered)	0.002	mg/L	< 0.002
Zinc (filtered)	0.005	mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B7A (filtered metals)			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Aug 12, 2016	7 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	Aug 11, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 11, 2016	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Sydney	Aug 12, 2016	7 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Speciated Phenols	Sydney	Aug 12, 2016	7 Day
- Method: E008 Speciated Phenols			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 12, 2016	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Metals M8 filtered	Sydney	Aug 11, 2016	28 Day
- Method: LTM-MET-3040 Metals in Waters by ICP-MS			
Conductivity (at 25°C)	Sydney	Aug 11, 2016	28 Day
- Method: LTM-INO-4030			
pH	Sydney	Aug 15, 2016	1 Day
- Method: LTM-GEN-7090 pH in water by ISE			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Getex Pty Ltd Address: Suite 2.02 Building 2 Waterloo Business Park 35 Macquarie Park NSW 2113 Project Name: 9528					Order No.: Report #: Phone: Fax:				0	11363 D 2 9889 2488 P 2 9889 2499 C	Received: Due: Priority: Contact Name:	Aug 10, 2016 3:29 PM Aug 17, 2016 5 Day Justin Thompson-Laing rvices Manager : Nibha Vaidya	
	Sample Detail				Conductivity (at 25°C)	PH	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B7A (filtered metals)	Euronins	I ingi Anaiyucal Se	n vices inidilayer . Nibila valûya	
	Melbourne Laboratory - NATA Site # 1254 & 14271							•					
	ney Laboratory					Х	X	X	Х	Х	-		
	bane Laboratory	-	20794								-		
External Laboratory													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	9528/BH1/1.0	Not Provided		Soil	S16-Au10576			Х	Х				
	9528/BH14/0.2 -0.3			Soil	S16-Au10577			x	х				
3	9528/WDT/W1 B	Not Provided		Water	S16-Au10578	х	х			х			
Test	Test Counts				1	1	2	2	1]			

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				-	
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	ions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
втех					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fracti	ions				
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank					
Speciated Phenols					
2.4-Dichlorophenol	mg/L	< 0.002	0.002	Pass	
2.4-Dimethylphenol	mg/L	< 0.002	0.002	Pass	
2.4.5-Trichlorophenol	mg/L	< 0.002	0.002	Pass	
2.4.6-Trichlorophenol	mg/L	< 0.002	0.002	Pass	
Phenol	mg/L	< 0.002	0.002	Pass	
2-Methylphenol (o-Cresol)	mg/L	< 0.002	0.002	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/L	< 0.004	0.004	Pass	
2-Chlorophenol	mg/L	< 0.002	0.002	Pass	
2-Nitrophenol	mg/L	< 0.002	0.002	Pass	
4-Chloro-3-methylphenol	mg/L	< 0.002	0.002	Pass	
Pentachlorophenol	mg/L	< 0.01	0.01	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fracti	ions				
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Conductivity (at 25°C)	uS/cm	< 1	1	Pass	
Method Blank					
Heavy Metals					
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.002	0.002	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery				1	
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	ons				
TRH C6-C9	%	75	70-130	Pass	
TRH C10-C14	%	96	70-130	Pass	
LCS - % Recovery	70		1 10-130	1 033	
BTEX					
Benzene	%	94	70-130	Pass	
Toluene	%	95	70-130	Pass	
	%	95			
Ethylbenzene		1	70-130	Pass	
m&p-Xylenes	%	100	70-130	Pass	
o-Xylene	%	99	70-130	Pass	
Xylenes - Total	%	99	70-130	Pass	
LCS - % Recovery		I I		1	
Total Recoverable Hydrocarbons - 2013 NEPM Fraction					
Naphthalene	%	75	70-130	Pass	
TRH C6-C10	%	81	70-130	Pass	
LCS - % Recovery		1		1	
Polycyclic Aromatic Hydrocarbons	-			_	
Acenaphthene	%	94	70-130	Pass	
Acenaphthylene	%	91	70-130	Pass	
Anthracene	%	93	70-130	Pass	
Benz(a)anthracene	%	90	70-130	Pass	
Benzo(a)pyrene	%	92	70-130	Pass	
Benzo(b&j)fluoranthene	%	89	70-130	Pass	
Benzo(g.h.i)perylene	%	86	70-130	Pass	
Benzo(k)fluoranthene	%	89	70-130	Pass	
Chrysene	%	100	70-130	Pass	
Dibenz(a.h)anthracene	%	75	70-130	Pass	
Fluoranthene	%	95	70-130	Pass	
Fluorene	%	100	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	82	70-130	Pass	
Naphthalene	%	103	70-130	Pass	
Phenanthrene	%	101	70-130	Pass	
Pyrene	%	93	70-130	Pass	
LCS - % Recovery					
Speciated Phenols					
2.4-Dichlorophenol	%	98	30-130	Pass	
2.4-Dimethylphenol	%	93	30-130	Pass	
2.4.5-Trichlorophenol	%	94	30-130	Pass	
2.4.6-Trichlorophenol	%	94	30-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Phenol			%	99		30-130	Pass	
2-Methylphenol (o-Cresol)			%	96		30-130	Pass	
3&4-Methylphenol (m&p-Cresol)			%	104		30-130	Pass	
2-Chlorophenol			%	97		30-130	Pass	
2-Nitrophenol			%	88		30-130	Pass	
4-Chloro-3-methylphenol			%	105		30-130	Pass	
Pentachlorophenol			%	101		30-130	Pass	
LCS - % Recovery								
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	tions						
TRH >C10-C16			%	100		70-130	Pass	
LCS - % Recovery								
Conductivity (at 25°C)			%	97		70-130	Pass	
LCS - % Recovery								
Heavy Metals								
Arsenic (filtered)			%	83		70-130	Pass	
Cadmium (filtered)			%	89		70-130	Pass	
Chromium (filtered)			%	83		70-130	Pass	
Copper (filtered)			%	85		70-130	Pass	
Lead (filtered)			%	87		70-130	Pass	
Mercury (filtered)			%	94		70-130	Pass	
Nickel (filtered)			%	84		70-130	Pass	
Zinc (filtered)			%	87		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				T	1 1	I		
Total Recoverable Hydrocarbons	s - 1999 NEPM Fract	tions		Result 1				
TRH C10-C14	S16-Au10661	NCP	%	129		70-130	Pass	
Spike - % Recovery				1	1 1	1	-	
Polycyclic Aromatic Hydrocarbo	ns	,		Result 1				
Acenaphthene	S16-Au10660	NCP	%	100		70-130	Pass	
Acenaphthylene	S16-Au10660	NCP	%	97		70-130	Pass	
Anthracene	S16-Au10660	NCP	%	99		70-130	Pass	
Benz(a)anthracene	S16-Au10660	NCP	%	105		70-130	Pass	
Benzo(a)pyrene	S16-Au10660	NCP	%	112		70-130	Pass	
Benzo(b&j)fluoranthene	S16-Au10660	NCP	%	111		70-130	Pass	
Benzo(g.h.i)perylene	S16-Au10660	NCP	%	114		70-130	Pass	
Benzo(k)fluoranthene	S16-Au10660	NCP	%	111		70-130	Pass	
Chrysene	S16-Au10660	NCP	%	106		70-130	Pass	
Dibenz(a.h)anthracene	S16-Au10660	NCP	%	98		70-130	Pass	
Fluoranthene	S16-Au10660	NCP	%	109		70-130	Pass	
Fluorene	S16-Au10660	NCP	%	104		70-130	Pass	
		1 1						
Indeno(1.2.3-cd)pyrene	S16-Au10660	NCP	%	105		70-130	Pass	
Indeno(1.2.3-cd)pyrene Naphthalene	S16-Au10660 S16-Au10660	NCP NCP	% %	115		70-130	Pass Pass	
Indeno(1.2.3-cd)pyrene	S16-Au10660	NCP NCP NCP	% % %	115 101		70-130 70-130		
Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	S16-Au10660 S16-Au10660	NCP NCP	% %	115		70-130	Pass	
Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery	S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10660	NCP NCP NCP NCP	% % %	115 101 108		70-130 70-130	Pass Pass	
Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery Total Recoverable Hydrocarbons	S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10660	NCP NCP NCP NCP	% % %	115 101		70-130 70-130 70-130	Pass Pass	
Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery Total Recoverable Hydrocarbons TRH >C10-C16	S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10660	NCP NCP NCP NCP	% % %	115 101 108		70-130 70-130	Pass Pass	
Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery Total Recoverable Hydrocarbons TRH >C10-C16 Spike - % Recovery	S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10660	NCP NCP NCP NCP	% % %	115 101 108 Result 1 122		70-130 70-130 70-130	Pass Pass Pass	
Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery Total Recoverable Hydrocarbons TRH >C10-C16 Spike - % Recovery Heavy Metals	S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10661	NCP NCP NCP NCP tions	% % % %	115 101 108 Result 1 122 Result 1		70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery Total Recoverable Hydrocarbons TRH >C10-C16 Spike - % Recovery Heavy Metals Arsenic (filtered)	S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10661 S16-Au10661	NCP NCP NCP NCP NCP	% % % %	115 101 108 Result 1 122 Result 1 94		70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery Total Recoverable Hydrocarbons TRH >C10-C16 Spike - % Recovery Heavy Metals Arsenic (filtered) Cadmium (filtered)	S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10661 S16-Au10661 S16-Au14162 S16-Au14162	NCP NCP NCP NCP NCP NCP NCP NCP	% % % %	115 101 108 Result 1 122 Result 1 94 96		70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass	
Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery Total Recoverable Hydrocarbons TRH >C10-C16 Spike - % Recovery Heavy Metals Arsenic (filtered)	S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10660 S16-Au10661 S16-Au10661	NCP NCP NCP NCP NCP	% % % %	115 101 108 Result 1 122 Result 1 94		70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	

Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
	· ·	Source					Limits	Limits	Code
Nickel (filtered)	S16-Au14162	NCP	%	80			70-130	Pass	
Zinc (filtered)	S16-Au14162	NCP	%	93			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					1				
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S16-Au11791	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S16-Au10659	NCP	mg/L	3.6	3.3	8.0	30%	Pass	
TRH C15-C28	S16-Au10659	NCP	mg/L	1.0	1.1	11	30%	Pass	
TRH C29-C36	S16-Au10659	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate							-	-	
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S16-Au11791	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S16-Au11791	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S16-Au11791	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S16-Au11791	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S16-Au11791	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S16-Au11791	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate								_	
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S16-Au11791	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S16-Au11791	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbo	ns			Result 1	Result 2	RPD			
Acenaphthene	S16-Au13263	NCP	mg/L	0.005	0.006	29	30%	Pass	
Acenaphthylene	S16-Au13263	NCP	mg/L	0.001	0.001	22	30%	Pass	
Anthracene	S16-Au13263	NCP	mg/L	0.001	0.002	51	30%	Fail	Q15
Benz(a)anthracene	S16-Au13263	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S16-Au13263	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	S16-Au13263	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	S16-Au13263	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S16-Au13263	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S16-Au13263	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S16-Au13263	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S16-Au13263	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S16-Au13263	NCP	mg/L	0.012	0.014	11	30%	Pass	
Indeno(1.2.3-cd)pyrene	S16-Au13263	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S16-Au13263	NCP	mg/L	0.24	0.25	5.0	30%	Pass	
Phenanthrene	S16-Au13263	NCP	mg/L	0.011	0.015	35	30%	Fail	Q15
Pyrene	S16-Au13263	NCP	mg/L	0.002	0.002	38	30%	Fail	Q15
Duplicate	01071010200			01002	0.002		0070		
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S16-Au10659	NCP	mg/L	1.4	1.2	17	30%	Pass	
TRH >C16-C34	S16-Au10659	NCP	mg/L	1.0	1.0	8.0	30%	Pass	
TRH >C34-C40	S16-Au10659	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (at 25°C)	S16-Au11637	NCP	uS/cm	1100	1100	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S16-Au14161	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	S16-Au14161	NCP	mg/L	0.0002	0.0002	5.0	30%	Pass	
Chromium (filtered)	S16-Au14161	NCP	mg/L	< 0.0002	< 0.001	<u> </u>	30%	Pass	
Copper (filtered)	S16-Au14161	NCP	mg/L	0.002	0.002	7.0	30%	Pass	
			· · · · · · · ·						

Duplicate												
Heavy Metals				Result 1	Result 2	RPD						
Mercury (filtered)	S16-Au14161	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass				
Nickel (filtered)	S16-Au14161	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass				
Zinc (filtered)	S16-Au14161	NCP	mg/L	0.033	0.031	7.0	30%	Pass				

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	No
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Nibha Vaidya	Analytical Services Manager
Ivan Taylor	Senior Analyst-Metal (NSW)
Ryan Hamilton	Senior Analyst-Inorganic (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:	Getex Pty Ltd
Contact name:	Justin Thompson-Laing
Project name:	9528
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Aug 10, 2016 3:29 PM
Eurofins mgt reference:	511363

Sample information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

web : www.eurofins.com.au

- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- \checkmark Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Justin Thompson-Laing - Justin.Thompson-Laing@getex.com.au.

Note: A copy of these results will also be delivered to the general Getex Pty Ltd email address.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

38 Years of Environmental Analysis & Experience

GETEX	Address: Phone: Facsimile: Email: Attention:	Getex Pty Ltd 2.02, Building 2 35 Waterloo Ro MACQUARIE P/ (02) 9889 2488 (02) 9889 2499 help@getex.co Justin Thompso	oad ARK }))m.a	(NS) au Lain	W :						mbi	ent	: Tei	I	ddre Pho	To: ess: one:	Eui Un 16 LAI (02 Env	rofii it F: Ma NE (2) 99 viro	f Cu ns 3, Bu rs Re COVI 900 3 Sam ole Te nples	me uild oac E V 840 ple	gt ling d VES 00 ≌NS	ς F ST Ν SW@	þeu	rofi	ns.o	com	au Rec	ceiv	ed (By:	K	Ρ	Proj	ect	Nur Nur	nbe nbe TA	er: er: AT:	575 952 5 da	.8 ays			5	:02	29	p	จา
Notes:	B7A at Trace LOF	R Analysis																																											1	
		Container			-	_	_	_		Singl	e Ar	alyt	es	_	_					T			Anat	ytes	_		-	Co	omb	os an	d No	on-S	tanc	lard	Ana	lyte	5			_	-	_	_	-		
Eurofins Sample Number	Getex Sample Number	Plastic Tube – PT Bag – B Petri Dish – PD Plastic Bottle – PB Glass Jar – GJ Glass Bottle – GB Glass Vial - GV	ткн	BTEXN	PAHs	MAHs	OPP	PCR	Lead	7 Metals	8+ Metals	Phenols-Speciated	vocs	Conductivity (EC)	pH (1:5)						87	B7A																			5					
	9528/BH1/1.0	GJ																			1														1			1		╈	1	T	\uparrow		1	
	9528/BH14/0.2-0.3	GJ																		Т	1												T	T	T			1		T						
	9528/WDT/W1b	2xGV, PB, GB		<u> </u>						L				1	1							1																								
				\square	\square								L																																	
				\square	$ \downarrow$		_													_	\perp		\perp																							
				\vdash		+	+	-	-				\vdash						\perp	4	_	\downarrow								\downarrow		\downarrow	\downarrow	\downarrow	\downarrow	_	_			\perp	\perp					
				⊢	$ \rightarrow$	+	+	╀	+	_		\vdash	\vdash		\vdash	\square				╇	+	_	+	\downarrow	╞	-			$ \rightarrow$	\downarrow		-	_	\downarrow		\downarrow	\downarrow	_		\downarrow	\downarrow					
				┢═╋	-+	_+	+	╀	+	-			-	-	-	Н			_	╀	+	+		+	╞				\dashv	\downarrow	+	\downarrow	\rightarrow		+	+	\downarrow	\downarrow	\downarrow	\downarrow	+	+-	_	\perp	-Ľ	
				⊢╂	+		+	╀	+	-			\vdash				17	_		╉	+	+		+-	╀	\vdash			\dashv	+	+	+	+		-	+	+	+	+	+	+	_		+-	-	
			\vdash	\vdash	+	+	╀	╀	┢	\vdash	-	\vdash	\vdash		\vdash	\vdash	-	-	+	\mathbf{h}	0	+	╉		╀	\vdash	\dashv	-	_	+	+	+	+	+	+			+	+	+	+	+	+	+	-1	
			┠┤	$ \rightarrow$	+	+	╋	┢	┢	\vdash	-	\vdash	\vdash	\vdash	\vdash	\square		-			-	-	+	+	+-	-	+	\dashv	+	+	-+-	-+	+	+	+	+	+	+	_		+	+	+	+		
				\square	-†		+	+	╉─	-	-	\vdash		\vdash	\vdash	H		-	-	t	-		+	+	╀	+-	+	+	+	+	+	+	+	+	+	╉	+	+	+	+	+	+	╋			
				\neg	-+		+	+	+-	-			\vdash	\vdash		$\left - \right $	\vdash	-	-	-	+	+		1	┢	+	-+	+	+	+	╉	+	+	+	-+-	+	+	+	+	+	+	+				
			H		-†		\uparrow	\uparrow	\uparrow	\vdash	<u> </u>	 	\vdash			┢┥	\vdash	+		t	+	+			┢	Ħ	-+	+	+	+	+	+	╉	╉		+	+	+	+	+	╉	+	+	+		
		Total					T	T						1	1					\dagger	2	1	100		\uparrow	\square	+	\uparrow	+	-†	+	+	+	+	+	+	+	-+			+	╈	+	+		

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

154588

Client: Getex Pty Ltd

2.02, Building 2 Waterloo Business Park 35 Waterloo Rd North Ryde NSW 2113

Attention: Justin Thompson-Laing

Sample log in details:

Your Reference:	9528		
No. of samples:	4 waters		
Date samples received / completed instructions received	30/9/16	/	30/9/16

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:				
Date results requested by: / Issue Date:	10/10/16	/	7/10/16	
Date of Preliminary Report:	Not Issued			
NATA accreditation number 2901. This document shall no	t be reproduced e	xcept i	n full.	
Accredited for compliance with ISO/IEC 17025 - Testing	Tests n	ot cov	ered by NATA are denote	d with *.

Results Approved By:

David Springer General Manager

Client Reference:

VOCs in water				
Our Reference:	UNITS	154588-1	154588-2	154588-3
Your Reference		9528/W1	9528/W2	9528/W3
Type of sample		water	water	water
Date extracted	-	05/10/2016	05/10/2016	05/10/2016
Date analysed	-	05/10/2016	05/10/2016	05/10/2016
Dichlorodifluoromethane	µg/L	<10	<10	<10
Chloromethane	µg/L	<10	<10	<10
Vinyl Chloride	µg/L	<10	<10	<10
Bromomethane	µg/L	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10
1,1-Dichloroethene	μg/L	<1	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1	<1
Bromochloromethane		<1	<1	<1
	µg/L			
Chloroform	µg/L	<1	<1	<1
2,2-dichloropropane	µg/L	<1	<1	<1
1,2-dichloroethane	µg/L	<1	<1	<1
1,1,1-trichloroethane	µg/L	<1	<1	<1
1,1-dichloropropene	µg/L	<1	<1	<1
Cyclohexane	µg/L	<1	<1	<1
Carbon tetrachloride	µg/L	<1	<1	<1
Benzene	µg/L	<1	<1	<1
Dibromomethane	µg/L	<1	<1	<1
1,2-dichloropropane	µg/L	<1	<1	<1
Trichloroethene	µg/L	<1	<1	<1
Bromodichloromethane	µg/L	<1	<1	<1
trans-1,3-dichloropropene	µg/L	<1	<1	<1
cis-1,3-dichloropropene	µg/L	<1	<1	<1
1,1,2-trichloroethane	µg/L	<1	<1	<1
Toluene	µg/L	<1	<1	<1
1,3-dichloropropane	μg/L	<1	<1	<1
Dibromochloromethane	μg/L	<1	<1	<1
1,2-dibromoethane	µg/L	<1	<1	<1
Tetrachloroethene	µg/L	<1	<1	<1
1,1,1,2-tetrachloroethane	µg/L	<1	<1	<1
Chlorobenzene	μg/L	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1
Bromoform	μg/L	<1	<1	<1
		<1 <2	<1 <2	<1 <2
m+p-xylene	µg/L			
Styrene	µg/L	<1	<1	<1
1,1,2,2-tetrachloroethane	µg/L	<1	<1	<1
o-xylene	µg/L	<1	<1	<1
1,2,3-trichloropropane	µg/L	<1	<1	<1

Client Reference:

VOCs in water				
Our Reference:	UNITS	154588-1	154588-2	154588-3
Your Reference		9528/W1	9528/W2	9528/W3
Type of sample		water	water	water
Isopropylbenzene	μg/L	<1	<1	<1
Bromobenzene	µg/L	<1	<1	<1
n-propyl benzene	µg/L	<1	<1	<1
2-chlorotoluene	µg/L	<1	<1	<1
4-chlorotoluene	µg/L	<1	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1	<1
Tert-butyl benzene	µg/L	<1	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1	<1
Sec-butyl benzene	µg/L	<1	<1	<1
1,4-dichlorobenzene	µg/L	<1	<1	<1
4-isopropyl toluene	µg/L	<1	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1	<1
n-butyl benzene	µg/L	<1	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1	<1
Hexachlorobutadiene	µg/L	<1	<1	<1
1,2,3-trichlorobenzene	µg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	114	116	115
Surrogate toluene-d8	%	102	101	100
Surrogate 4-BFB	%	105	106	105

vTRH(C6-C10)/BTEXNinWater Our Reference: Your Reference	UNITS 	154588-1 9528/W1	154588-2 9528/W2	154588-3 9528/W3	154588-4 9528/W2a
Type of sample		water	water	water	water
Date extracted	-	05/10/2016	05/10/2016	05/10/2016	05/10/2016
Date analysed	-	05/10/2016	05/10/2016	05/10/2016	05/10/2016
TRHC6 - C9	μg/L	<10	<10	<10	<10
TRHC6 - C10	μg/L	<10	<10	<10	<10
TRHC6 - C10 less BTEX (F1)	µg/L	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2
o-xylene	µg/L	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	114	116	115	115
Surrogate toluene-d8	%	102	101	100	101
Surrogate 4-BFB	%	105	106	105	105

svTRH (C10-C40) in Water					
Our Reference:	UNITS	154588-1	154588-2	154588-3	154588-4
Your Reference		9528/W1	9528/W2	9528/W3	9528/W2a
	-				
Type of sample		water	water	water	water
Date extracted	-	04/10/2016	04/10/2016	04/10/2016	04/10/2016
Date analysed	-	04/10/2016	04/10/2016	04/10/2016	04/10/2016
TRHC 10 - C14	µg/L	<50	<50	<50	<50
TRHC 15 - C28	µg/L	<100	<100	<100	<100
TRHC29 - C36	µg/L	<100	<100	<100	<100
TRH>C10 - C16	µg/L	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	<50	<50
TRH>C16 - C34	µg/L	<100	<100	<100	<100
TRH>C34 - C40	µg/L	<100	<100	<100	<100
Surrogate o-Terphenyl	%	60	81	81	90

Client Reference:

PAHs in Water - Low Level					
Our Reference:	UNITS	154588-1	154588-2	154588-3	154588-4
Your Reference		9528/W1	9528/W2	9528/W3	9528/W2a
Type of sample		water	water	water	water
Date extracted	-	04/10/2016	04/10/2016	04/10/2016	04/10/2016
Date analysed	-	04/10/2016	04/10/2016	04/10/2016	04/10/2016
Naphthalene	μg/L	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	μg/L	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5	<0.5
Total+ve PAH's	µg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	66	91	90	96

9

HM in water - dissolved Our Reference:	UNITS	154588-1	154588-2	154588-3	154588-4
Your Reference		9528/W1	9528/W2	9528/W3	9528/W2a
Type of sample		water	water	water	water
Date prepared	-	04/10/2016	04/10/2016	04/10/2016	04/10/2016
Date analysed	-	04/10/2016	04/10/2016	04/10/2016	04/10/2016
Arsenic-Dissolved	µg/L	14	9	<1	8
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1
Copper-Dissolved	µg/L	14	2	2	2
Lead-Dissolved	µg/L	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	23	7	3	7
Zinc-Dissolved	µg/L	71	26	7	24

Client Reference:

Total Phenolics in Water					
Our Reference:	UNITS	154588-1	154588-2	154588-3	154588-4
Your Reference		9528/W1	9528/W2	9528/W3	9528/W2a
	-				
Type of sample		water	water	water	water
Date extracted	-	04/10/2016	04/10/2016	04/10/2016	04/10/2016
Date analysed	-	04/10/2016	04/10/2016	04/10/2016	04/10/2016
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05

Miscellaneous Inorganics Our Reference: Your Reference	UNITS	154588-1 9528/W1	154588-2 9528/W2	154588-3 9528/W3	154588-4 9528/W2a
Type of sample	-	water	water	water	water
Date prepared	-	30/09/2016	30/09/2016	30/09/2016	30/09/2016
Date analysed	-	30/09/2016	30/09/2016	30/09/2016	30/09/2016
рН	pH Units	7.1	7.1	7.1	7.1
Electrical Conductivity	µS/cm	12,000	15,000	12,000	15,000
Ammonia as N in water	mg/L	0.12	0.14	0.046	[NA]

Client Reference: 9528

MethodID	Methodology Summary
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Soils are analysed following a KCI extraction.

QUALITYCONTROL	UNITS	PQL	ent Reference	Blank	528 Duplicate	Duplicate results	Spike Sm#	Spike %
				Dialin	Sm#		Opine Offi#	Recovery
VOCs in water						Base II Duplicate II % RPD		
Date extracted	-			05/10/2 016	[NT]	[NT]	LCS-W1	05/10/2016
Date analysed	-			05/10/2 016	[NT]	[NT]	LCS-W1	05/10/2016
Dichlorodifluoromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Chloromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Bromomethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Chloroethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Trans-1,2- dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1-dichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	114%
Cis-1,2-dichloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromochloromethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Chloroform	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	113%
2,2-dichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	113%
1,1,1-trichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	113%
1,1-dichloropropene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Cyclohexane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Carbon tetrachloride	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Dibromomethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Trichloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	124%
Bromodichloromethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	112%
trans-1,3- dichloropropene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
cis-1,3-dichloropropene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Toluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Dibromochloromethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	109%
1,2-dibromoethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Tetrachloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	111%
1,1,1,2- tetrachloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Chlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromoform	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
m+p-xylene	μg/L	2	Org-013	2	[NT]	[NT]	[NR]	[NR]
Styrene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1,2,2- tetrachloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
o-xylene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II % RPD		
1,2,3-trichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Isopropylbenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Tert-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Sec-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Hexachlorobutadiene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Surrogate Dibromofluoromethane	%		Org-013	106	[NT]	[NT]	LCS-W1	85%
Surrogate toluene-d8	%		Org-013	102	[NT]	[NT]	LCS-W1	103%
Surrogate 4-BFB	%		Org-013	106	[NT]	[NT]	LCS-W1	90%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	528 Duplicate	Duplicate results	Spike Sm#	Spike %
	UNITS	PQL	METHOD	DIdNK	Sm#		Spike Sm#	Recovery
vTRH(C6-C10)/BTEXN in Water						Base II Duplicate II % RPD		
Date extracted	-			05/10/2 016	[NT]	[NT]	LCS-W1	05/10/2016
Date analysed	-			05/10/2 016	[NT]	[NT]	LCS-W1	05/10/2016
TRHC6 - C9	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	104%
TRHC6 - C10	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	104%
Benzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	114%
Toluene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	116%
Ethylbenzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	96%
m+p-xylene	µg/L	2	Org-016	<2	[NT]	[NT]	LCS-W1	97%
o-xylene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	98%
Naphthalene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%	Org-016 106 [NT] [NT]			LCS-W1	85%		
Surrogate toluene-d8	% Org-016 102 [NT] [NT]		[NT]	LCS-W1	103%			
Surrogate 4-BFB	%		Org-016	106	[NT]	[NT]	LCS-W1	90%
QUALITYCONTROL	UNITS	PQL	METHOD			Spike Sm#	Spike % Recovery	
svTRH (C10-C40) in Water			Base II Duplicate II % RPD					
Date extracted	-			04/10/2 016	[NT]	[NT]	LCS-W1	04/10/2016
Date analysed	-			04/10/2 016	[NT]	[NT]	LCS-W1	04/10/2016
TRHC 10 - C14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	105%
TRHC 15 - C28	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	105%
TRHC29 - C36	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	118%
TRH>C10 - C16	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	105%
TRH>C16 - C34	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	105%
TRH>C34 - C40	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	118%
Surrogate o-Terphenyl	%		Org-003	68	[NT]	[NT]	LCS-W1	70%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Water - Low Level					Sm#	Base II Duplicate II %RPD		Recovery
Date extracted	-			04/10/2 016	[NT]	[NT]	LCS-W1	04/10/2016
Date analysed	-			04/10/2 016	[NT]	[NT]	LCS-W1	04/10/2016
Naphthalene	µg/L	0.2	Org-012	<0.2	[NT]	[NT]	LCS-W1	70%
Acenaphthylene	µg/L	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	μg/L	0.1	Org-012	<0.1	[NT]	[NT]	LCS-W1	77%
Phenanthrene	µg/L	0.1	Org-012	<0.1	[NT]	[NT]	LCS-W1	81%
Anthracene	⊭g/L	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	μg/L	0.1	Org-012	<0.1	[NT]	[NT]	LCS-W1	74%
	1 M.S		0.90.2		1 1 1 1	1 I I I I I I I I I I I I I I I I I I I		/ 0

		Clie	ent Referenc	e: 95	528			
QUALITYCONTROL PAHs in Water - Low Level	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Benzo(a)anthracene	μg/L	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	µg/L	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(b,j+k) fluoranthene	µg/L	0.2	Org-012	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	0.1	Org-012	<0.1	[NT]	[NT]	LCS-W1	78%
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	µg/L	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012	73	[NT]	[NT]	LCS-W1	85%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II % RPD		
Date prepared	-			04/10/2 016	[NT]	[NT]	LCS-W2	04/10/2016
Date analysed	-			04/10/2 016	[NT]	[NT]	LCS-W2	04/10/2016
Arsenic-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W2	95%
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1	[NT]	[NT]	LCS-W2	99%
Chromium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W2	86%
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W2	87%
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W2	98%
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]	[NT]	LCS-W2	105%
Nickel-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W2	89%
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W2	92%

			Clie	nt Referenc	e: 95	528					
QUALITYCONTROL	UNITS	PQL		METHOD	Blank	Duplicate Sm#	Du	plicate results	Spike Sm#	Spike % Recovery	
Total Phenolics in Water							Bas	sellDuplicatell%RPD			
Date extracted	-				04/10/2 016	154588-1	04	4/10/2016 04/10/2016	LCS-W1	04/10/20	16
Date analysed	-				04/10/2 016	154588-1	04	4/10/2016 04/10/2016	LCS-W1	04/10/20	16
Total Phenolics (as Phenol)	mg/L	0.	05	Inorg-031	<0.05	154588-1		<0.05 <0.05	LCS-W1	103%	
QUALITYCONTROL	UNITS	PQL		METHOD	Blank	Duplicate Sm#	Du	plicate results	Spike Sm#	Spike % Recovery	
Miscellaneous Inorganics							Bas	sellDuplicatell%RPD			
Date prepared	-				30/09/2 016	154588-1	30	30/09/2016 30/09/2016 LCS-W1		30/09/20	16
Date analysed	-				30/09/2 016	154588-1	30)/09/2016 30/09/2016	LCS-W1	30/09/2016	
pН	pHUnits			Inorg-001	[NT]	154588-1		7.1 7.1 RPD:0	LCS-W1	102%	
Electrical Conductivity	µS/cm		1	Inorg-002	<1	154588-1	12	2000 12000 RPD:0	LCS-W1	104%	
Ammonia as N in water	mg/L	0.0	005	Inorg-057	<0.005	154588-1		0.12 0.12 RPD:0	LCS-W1	100%	
QUALITYCONTROL	UNI	rs	Dup.Sm#		Duplicate						
HM in water - dissolved					Base + Duplicate + % RPD		PD				
Date prepared	-		1	154588-4	04/10/2	016 04/10/201	6				
Date analysed	-		1	154588-4	04/10/2	016 04/10/201	6				
Mercury-Dissolved	μg	L	1	154588-4	<	0.05 <0.05					
QUALITYCONTROL	UNI	rs	[Dup.Sm#		Duplicate		Spike Sm#	Spike % Reco	overy	
Miscellaneous Inorganics					Base + I	Duplicate+%RF	PD				
Date prepared	-			[NT]		[NT]		154588-2	30/09/201	6	
Date analysed	-			[NT]		[NT]		154588-2	30/09/201	6	
pН	рHU	nits		[NT]		[NT]		[NR]	[NR]		
Electrical Conductivity	μS/	cm		[NT]		[NT]		[NR]	[NR]		
Ammonia as N in water	mg	/L		[NT]		[NT]		154588-2 94%			

Report Comments:

Dissolved Metals: The preserved sample provided was not identified as either total or dissolved, therefore the unpreserved sample was filtered through 0.45um filter at the lab. Note: there is a possibility some elements may be underestimated.

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Chain of Custody From: Getex Pty Ltd To: Envirolab Services Pty Ltd Date: 29/09/2016 Address: 2.02, Building 2, Macquarie Business Park Address: 12 Ashley Street Order Number: 5787 35 Waterloo Road CHATSWOOD NSW 2067 Project Number: 9528 Phone: (02) 9910 6200 MACQUARIE PARK NSW 2113 GETEX Facsimile: (02) 9910 6299 TAT: 5 Days Phone: (02) 9889 2488 Facsimile: (02) 9889 2499 Email: help@getex.com.au Attention: Justin Thompson-Laing Received By: 42 Samples Recieved Chilled Date: 之 Samples Received at Ambient Temp. Notes: Please filter for Suite of 8 Metals Water Container **Single Analytes Combos and Non-Standard Analytes** Plastic Tube - PT Bag – B **Envirolab Barcode** Getex Sample Petri Dish - PD Combination 4L Number Number Plastic Bottle – PB PAH Routine Metals Lab Filtration Glass Jar – GJ Ammonia **TRH/BTEX** Phenolics Glass Bottle – GB PAH Low Cyanide Glass Vial - GV 4 - 17 | VOCs ОРР ead OCP PCB EC Hd 9528/W1 2xGV, 2xPB, GB 1 1 1 1 1 1 plab Services 12 Ashey St 12 Ashey St 2 1 1 9528/W2 2xGV, 2xPB, GB 1 1 1 1 12 NSW 2007 2 1 1 1 9528/W3 2xGV, 2xPB, GB 1 1 1 chats Ph: (02 4 1 1 1 1 aB 9528/W1a 2xGV, 2xPB, GB ENI 580 NO 301 0 Rece TIME by Acepack veniNone 20 C Ge(3 3 Total 4 4 4 4

Getex Pty Ltd Suite 2.02 Building 2 Waterloo Business Park 35 Macquarie Park NSW 2113

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Justin Thompson-Laing

Report Project name Received Date **517953-W** 9528 Sep 30, 2016

Client Sample ID			9528/W2B
Sample Matrix			Water
Eurofins mgt Sample No.			S16-Se29080
Date Sampled			Sep 29, 2016
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM			
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1
BTEX	•		
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	99
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•	
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02
Polycyclic Aromatic Hydrocarbons	·		
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001

Client Sample ID				9528/W2B
Sample Matrix				Water
Eurofins mgt Sample No.				S16-Se29080
Date Sampled				Sep 29, 2016
Test/Reference	L	.OR	Unit	
Polycyclic Aromatic Hydrocarbons				
2-Fluorobiphenyl (surr.)		1	%	106
p-Terphenyl-d14 (surr.)		1	%	118
Speciated Phenols				
2.4-Dichlorophenol	0	.001	mg/L	< 0.001
2.4-Dimethylphenol	0	.001	mg/L	< 0.001
2.4.5-Trichlorophenol	0	.001	mg/L	< 0.001
2.4.6-Trichlorophenol	0	.01	mg/L	< 0.01
Phenol	0	.003	mg/L	< 0.003
2-Methylphenol (o-Cresol)	0	.003	mg/L	< 0.003
3&4-Methylphenol (m&p-Cresol)	0	.006	mg/L	< 0.006
2-Chlorophenol	0	.003	mg/L	< 0.003
2-Nitrophenol	0	.005	mg/L	< 0.005
4-Chloro-3-methylphenol	0	.01	mg/L	< 0.01
Pentachlorophenol	0	.01	mg/L	< 0.01
Phenol-d5 (surr.)		1	%	126
Total Recoverable Hydrocarbons - 2013	NEPM Fractions			
TRH >C10-C16	0	.05	mg/L	< 0.05
TRH >C16-C34		0.1	mg/L	< 0.1
TRH >C34-C40		0.1	mg/L	< 0.1
Conductivity (at 25°C)		1	uS/cm	12000
рН		0.1	pH Units	6.8
Heavy Metals				
Arsenic (filtered)	0	.001	mg/L	0.011
Cadmium (filtered)	0.	0002	mg/L	< 0.0002
Chromium (filtered)	0	.001	mg/L	0.003
Copper (filtered)	0	.001	mg/L	0.001
Lead (filtered)	0	.001	mg/L	< 0.001
Mercury (filtered)	0.	0001	mg/L	< 0.0001
Nickel (filtered)	0	.001	mg/L	0.002
Zinc (filtered)	0	.005	mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B7A (filtered metals)			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Oct 06, 2016	7 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	Sep 30, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 30, 2016	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Sydney	Oct 06, 2016	7 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Speciated Phenols	Sydney	Oct 06, 2016	7 Day
- Method: E008 Speciated Phenols			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 06, 2016	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Metals M8 filtered	Sydney	Sep 30, 2016	28 Day
- Method: LTM-MET-3040 Metals in Waters by ICP-MS			
Conductivity (at 25°C)	Sydney	Oct 06, 2016	28 Day
- Method: LTM-INO-4030			
pH	Sydney	Oct 06, 2016	1 Day
- Method: LTM-GEN-7090 pH in water by ISE			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Ad	Company Name: Getex Pty Ltd Address: Suite 2.02 Building 2 Waterloo Business Park 35 Macquarie Park NSW 2113 Project Name: 9528						Order No.: Report #: Phone: Fax:		Received:Sep 30, 2016 2:00 PMDue:Oct 10, 2016Priority:5 DayContact Name:Justin Thompson-Laing
Pro	oject Name:	9528							Eurofins mgt Analytical Services Manager : Nibha Vaidy
		Sa	mple Detail			Conductivity (at 25°C)	рн	Eurofins mgt Suite B7A (filtered metals)	
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71					
	ney Laboratory					Х	Х	X	
Bris	bane Laborator	y - NATA Site #	20794						
Exte	External Laboratory								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	9528/W2B	Sep 29, 2016		Water	S16-Se29080	Х	х	х	
Test	Counts					1	1	1	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank			,		
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions				
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
Method Blank				1	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene		< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
	mg/L	< 0.001			
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L		0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene Mathe	mg/L	< 0.001	0.001	Pass	
Method Blank		1		1	
Total Recoverable Hydrocarbons - 2013 NEPM Frac		.0.05		Daaa	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Conductivity (at 25°C)	uS/cm	< 1	1	Pass	
Method Blank					
Heavy Metals				<u> </u>	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	101	70-130	Pass	
TRH C10-C14	%	92	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	90	70-130	Pass	
Toluene	%	91	70-130	Pass	
Ethylbenzene	%	93	70-130	Pass	
m&p-Xylenes	%	92	70-130	Pass	
o-Xylene	%	93	70-130	Pass	
Xylenes - Total	%	92	70-130	Pass	
LCS - % Recovery	/0	02		1 400	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions				1	
Naphthalene	%	98	70-130	Pass	
TRH C6-C10	%	90	70-130	Pass	
LCS - % Recovery	/0	30	///////////////////////////////////////	1 455	
Polycyclic Aromatic Hydrocarbons				1	
Acenaphthene	%	107	70-130	Pass	
Acenaphthylene	%	98	70-130	Pass	
			70-130		
Anthracene	%	119		Pass	
Benz(a)anthracene	%	80	70-130	Pass	
Benzo(a)pyrene	%	86	70-130	Pass	
Benzo(b&j)fluoranthene	%	95	70-130	Pass	
Benzo(g.h.i)perylene	%	122	70-130	Pass	
Benzo(k)fluoranthene	%	87	70-130	Pass	
Chrysene	%	111	70-130	Pass	
Dibenz(a.h)anthracene	%	80	70-130	Pass	
Fluoranthene	%	108	70-130	Pass	
Fluorene	%	107	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	84	70-130	Pass	
Naphthalene	%	108	70-130	Pass	
Phenanthrene	%	119	70-130	Pass	
Pyrene	%	109	70-130	Pass	
LCS - % Recovery		1			
Speciated Phenols					
2.4-Dichlorophenol	%	118	30-130	Pass	
2.4-Dimethylphenol	%	120	30-130	Pass	
2.4.5-Trichlorophenol	%	117	30-130	Pass	
2.4.6-Trichlorophenol	%	118	30-130	Pass	
Phenol	%	121	30-130	Pass	
2-Methylphenol (o-Cresol)	%	119	30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	%	118	30-130	Pass	
2-Chlorophenol	%	119	30-130	Pass	
2-Nitrophenol	%	121	30-130	Pass	
4-Chloro-3-methylphenol	%	119	30-130	Pass	
Pentachlorophenol	%	107	30-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	%	93	70-130	Pass	
LCS - % Recovery					
Conductivity (at 25°C)	%	110	70-130	Pass	
LCS - % Recovery					

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Heavy Metals									
Arsenic (filtered)			%	92			70-130	Pass	
Cadmium (filtered)			%	92			70-130	Pass	
Chromium (filtered)			%	95			70-130	Pass	
Copper (filtered)			%	93			70-130	Pass	
Lead (filtered)			%	91			70-130	Pass	
Mercury (filtered)			%	94			70-130	Pass	
Nickel (filtered)			%	96			70-130	Pass	
Zinc (filtered)	1		%	93			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions		Result 1					
TRH C6-C9	S16-Se27986	NCP	%	108			70-130	Pass	
TRH C10-C14	S16-Se26180	NCP	%	105			70-130	Pass	
Spike - % Recovery									
BTEX	1			Result 1					
Benzene	S16-Se27986	NCP	%	104			70-130	Pass	
Toluene	S16-Se27986	NCP	%	101			70-130	Pass	
Ethylbenzene	S16-Se27986	NCP	%	103			70-130	Pass	
m&p-Xylenes	S16-Se27986	NCP	%	102			70-130	Pass	
o-Xylene	S16-Se27986	NCP	%	103			70-130	Pass	
Xylenes - Total	S16-Se27986	NCP	%	102			70-130	Pass	
Spike - % Recovery				1				1	
Total Recoverable Hydrocarbons -		tions		Result 1					
Naphthalene	S16-Se27986	NCP	%	106			70-130	Pass	
TRH C6-C10	S16-Se27986	NCP	%	95			70-130	Pass	
Spike - % Recovery							1	1	
Total Recoverable Hydrocarbons -				Result 1					
TRH >C10-C16	S16-Se26180	NCP	%	106			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1			T		
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	S16-Se27985	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S16-Se26179	NCP	mg/L	0.11	0.10	10	30%	Pass	
TRH C15-C28	S16-Se26179	NCP	mg/L	0.6	0.5	17	30%	Pass	
TRH C29-C36	S16-Se26179	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate					1				
втех	1	1		Result 1	Result 2	RPD	-		
Benzene	S16-Se27985	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S16-Se27985	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S16-Se27985	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S16-Se27985	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S16-Se27985	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S16-Se27985	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate	0040 1/2012 -			D	D. 110	0.02		1	
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD			
Naphthalene	S16-Se27985	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S16-Se27985	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate				Dec. 19.4	Destro	000			
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD	0.007		
TRH >C10-C16	S16-Se26179	NCP	mg/L	0.23	0.21	9.0	30%	Pass	
TRH >C16-C34	S16-Se26179	NCP	mg/L	0.5	0.4	22	30%	Pass	
TRH >C34-C40	S16-Se26179	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	

Duplicate									
				Result 1	Result 2	RPD			
Conductivity (at 25°C)	S16-Se29080	CP	uS/cm	12000	12000	<1	30%	Pass	

Comments

N/A
Yes
No
No
Yes
Yes
No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Nibha Vaidya	Analytical Services Manager
Ivan Taylor	Senior Analyst-Metal (NSW)
Ryan Hamilton	Senior Analyst-Inorganic (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

li jak

Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mg shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg to liable for consequential damages including, but not limited to, isst production arising for list interproduction arising for the interproduction arising for list interproduction arising for list interproduction arising for this report. This document shall not be reproduced except in full and relates only to the times tested. Unless indicated otherwise, the tests twen performed on the samples as received.

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:	Getex Pty Ltd
Contact name:	Justin Thompson-Laing
Project name:	9528
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Sep 30, 2016 2:00 PM
Eurofins mgt reference:	517953

Sample information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

web : www.eurofins.com.au

- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- \checkmark Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Incorrect container supplied for pH, EC and filtered metals analysis conducted from amber received

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Justin Thompson-Laing - Justin.Thompson-Laing@getex.com.au.

Note: A copy of these results will also be delivered to the general Getex Pty Ltd email address.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis Environmental Laboratories Industry Group

38 Years of Environmental Analysis & Experience

Chain of Custody From: Getex Pty Ltd Date: 29/09/2016 To: Eurofins | mgt Address: 2.02, Building 2, Macquarie Business Park Address: Unit F3, Building F Order Number: 5788 35 Waterloo Road 16 Mars Road Project Number: 9528 MACQUARIE PARK NSW 2113 LANE COVE WEST NSW 2066 GETEX Phone: (02) 9889 2488 Phone: (02) 9900 8400 TAT: 5 days Facsimile: (02) 9889 2499 Email: EnviroSampleNSW@eurofins.com.au Email: help@getex.com.au Received By: Belknkg Attention: Justin Thompson-Laing Sample Temp: Samples Received at Ambient Temp. Samples Received Chilled Signature: 🥳 Notes: B7A at Trace LOR Analysis, Please Silter before Metals Analysis Container Analytes **Single Analytes Combos and Non-Standard Analytes** Plastic Tube – PT Bag-B Phenols-Speciated **Eurofins Sample Getex Sample** Petri Dish – PD Conductivity (EC) Number Number Plastic Bottle - PB Glass Jar – GJ 8+ Metals Glass Bottle – GB 7 Metals pH (1:5) BTEXN MAHs OCP OPP Glass Vial - GV VOCS PAHs ead ΓRΗ g B7A 8 9528/W2b 1 2xGV, 2xPB, GB 1 1 Total 1 1 1

APPENDIX V

QUALITY ASSURANCE / QUALITY CONTROL

QUALITY ASSURANCE/QUALITY CONTROL

The sampling and analysis program included, for Quality Assurance / Quality Control (QA/QC) purposes, the analysis of blind and split replicate samples. For soil sampling two blind and two split replicates were taken for TRH, BTEX, PAHs and Metals. For groundwater sampling one blind and one split replicates were taken for TRH, BTEX, PAHs, Metals, EC and pH. For water sampling one blind and one split replicates were taken for TRH, BTEX, PAHs, Metals, EC and pH. For water sampling one blind and one split replicates were taken for TRH, BTEX, PAHs, Metals, EC and pH. The primary and blind replicate samples were sent to the same laboratory (Envirolab Services Pty Ltd) and the split replicates were sent to an independent laboratory (Eurofins | mgt).

The data quality objective was defined as an acceptable relative percentage difference (RPD) between the primary and blind or split sample of 30% - 50%. This variation can be expected to be higher for organic analysis than for inorganics, and for low concentration of analytes. However a higher RPD was considered to be acceptable in cases where the analytical result was less than three times the laboratory's lower limit of reporting, or where the analytical result was less than 10% of the acceptance criteria. In these situations a large RPD value that has little significance.

The RPD is a measure of precision that was calculated by dividing the difference of two laboratory reported values by the average of those values, multiplied by 100.

I.e. RPD = $(X_1 - X_2) / X_{ave} \times 100$

Where:

 X_1 = concentration observed with the first detector or equipment;

 X_2 = concentration observed with the second detector, equipment, or absolute value; and

 X_{ave} = average concentration = [(X1 + X2) / 2]

The Laboratory QA/QC procedure must comply with the following minimum requirements:

- At least one blank every 20 samples
- At least one Laboratory control sample every 20 samples
- At least one duplicate every 10 samples
- At least one matrix spike every 20 samples

The assessment of the laboratory analytical data also included the following conditions:

- Maximum sample holding times for organics were 14 days. Metals and metalliods holding times were 6 months. Mercury (Hg) holding times was 28 days;
- Sample preservation and handling were conducted in accordance with industry accepted standards;
- All sample analyses were conducted by NATA accredited laboratories;
- Laboratory blank analysis to be below PQLs; and
- The relative percentage difference (RPD) of duplicates/replicates and percent recoveries of control spikes to be calculated and compared to the following criteria:
 - Less than 30% for field replicates;

- Less than 40% for internal duplicate samples and less than 44% on duplicates with 10 times the limit of reporting; and
 75-125% recovery for internal recovery samples.

Analyte	Analyte C	oncentration Tot	als (mg/kg)	Relative Percentage Difference of Blind Replicate	Relative Percentage Difference of Split Replicate
Sample Number	9528/BH1/1.0	9528/BH1/1.0a	9528/BH1/1.0b	%	%
Laboratory	Envirolab Services Pty Ltd	Envirolab Services Pty Ltd Blind	Eurofins mgt	-	-
Replicate Description	Primary Sample	Replicate of 9528/BH1/1.0	Split Replicate of 9528/BH1/1.0	-	-
TRH C6 - C9	<25	<25	< 20	0%	22%
TRH C6 - C10	<25	<25	< 20	0%	22%
vTPH C6 - C10 less BTEX (F1)	<25	<25	< 20	0%	22%
Benzene	<0.2	<0.2	< 0.1	0%	67%*
Toluene	<0.5	<0.5	< 0.1	0%	133%*
Ethylbenzene	<1	<1	< 0.1	0%	164%*
m+p-xylene	<2	<2	< 0.2	0%	164%*
o-Xylene	<1	<1	< 0.1	0%	164%*
naphthalene	<1	<1	< 0.5	0%	67%*
TRH C10 - C14	<50	<50	< 20	0%	86%*
TRH C15 - C28	<100	<100	< 50	0%	67%*
TRH C29 - C36	<100	<100	< 50	0%	67%*
TRH >C10-C16	<50	<50	< 50	0%	0%
TRH >C10 - C16 less Naphthalene (F2)	<50	<50	< 50	0%	0%
TRH>C16-C34 (F3)	<100	<100	< 100	0%	0%
TRH>C34-C40 (F4)	<100	<100	< 100	0%	0%
Xylenes	<3	<3	<0.3	0%	164%*
Arsenic	13	11	16	17%	21%
Cadmium	<0.4	<0.4	< 0.4	0%	0%
Chromium	21	16	22	27%	5%
Copper	16	14	17	13%	6%
Lead	15	9	11	50%	31%
Mercury	<0.1	<0.1	< 0.05	0%	67%*
Nickel	8	6	8.1	29%	1%
Zinc	27	23	33	16%	20%
Naphthalene	<0.1	<0.1	< 0.5	0%	133%*

Acenaphthylene	<0.1	<0.1	< 0.5	0%	133%*
Acenaphthene	<0.1	<0.1	< 0.5	0%	133%*
Fluorene	<0.1	<0.1	< 0.5	0%	133%*
Phenanthrene	0.1	<0.1	< 0.5	0%	133%*
Anthracene	<0.1	<0.1	< 0.5	0%	133%*
Fluoranthene	<0.1	<0.1	< 0.5	0%	133%*
Pyrene	<0.1	<0.1	< 0.5	0%	133%*
Benzo(a)anthracene	<0.1	<0.1	< 0.5	0%	133%*
Chrysene	<0.1	<0.1	< 0.5	0%	133%*
Benzo(b,j+k)fluoranthene	<0.2	<0.2	< 0.5	0%	86%*
Benzo(a)pyrene	<0.05	<0.05	< 0.5	0%	164%*
Indeno(1,2,3-c,d)pyrene	<0.1	<0.1	< 0.5	0%	133%*
Dibenzo(a,h)anthracene	<0.1	<0.1	< 0.5	0%	133%*
Benzo(g,h,i)perylene	<0.1	<0.1	< 0.5	0%	133%*
Benzo(a)pyrene TEQ calc (zero)	<0.5	<0.5	< 0.5	0%	0%
Benzo(a)pyrene TEQ calc(half)	<0.5	<0.5	0.6	0%	18%
Benzo(a)pyrene TEQ calc(PQL)	<0.5	<0.5	1.2	0%	82%*
Total Positive PAHs	0.13	NIL (+)VE	0	-	-
Total PAHs	<1.55	<1.55	< 0.5	0%	102%*

				Relative Percentag e Difference of Blind	Relative Percentag e Difference of Split
Analyte		oncentration Tota		Replicate	Replicate
Sample Number	9528/BH14/0.2 -0.3	9528/BH14/0.2 -0.3a	9528/BH14/0.2 -0.3b	%	%
Laboratory	Envirolab Services Pty Ltd	Envirolab Services Pty Ltd Blind Replicate of	Eurofins mgt Split Replicate of	-	-
Replicate Description	Primary Sample	9528/BH14/0.2 -0.3	9528/BH14/0.2 -0.3	-	-
TRH C6 - C9	<25	<25	< 20	0%	22%
TRH C6 - C10	<25	<25	< 20	0%	22%
vTPH C6 - C10 less BTEX (F1)	<25	<25	< 20	0%	22%
Benzene	<0.2	<0.2	< 0.1	0%	67%*
Toluene	<0.5	<0.5	< 0.1	0%	133%*
Ethylbenzene	<1	<1	< 0.1	0%	164%*
m+p-xylene	<2	<2	< 0.2	0%	164%*
o-Xylene	<1	<1	< 0.1	0%	164%*
naphthalene	<1	<1	< 0.5	0%	67%*
TRH C10 - C14	<50	<50	< 20	0%	86%*
TRH C15 - C28	<100	<100	< 50	0%	67%*
TRH C29 - C36	<100	<100	< 50	0%	67%*
TRH >C10-C16	<50	<50	< 50	0%	0%
TRH >C10 - C16 less Naphthalene (F2)	<50	<50	< 50	0%	0%
TRH>C16-C34 (F3)	<100	<100	< 100	0%	0%
TRH>C34-C40 (F4)	<100	<100	< 100	0%	0%
Xylenes	<3	<3	<0.3	0%	164%*
Arsenic	5	6	5.8	18%	15%
Cadmium	<0.4	<0.4	< 0.4	0%	0%
Chromium	15	15	< 0.4 14	0%	7%
Copper	24	29	23	19%	4%
	4 7		2	1370	-70
Lead	14	15	15	7%	7%
Mercury	<0.1	<0.1	< 0.05	0%	67%*
Nickel	11	12	11	9%	0%
Zinc	49	55	47	12%	4%
Naphthalene	<0.1	<0.1	< 0.5	0%	133%*
Acenaphthylene	<0.1	<0.1	< 0.5	0%	133%*

Acenaphthene	<0.1	<0.1	< 0.5	0%	133%*
Fluorene	<0.1	<0.1	< 0.5	0%	133%*
Phenanthrene	<0.1	<0.1	< 0.5	0%	133%*
Anthracene	<0.1	<0.1	< 0.5	0%	133%*
Fluoranthene	<0.1	<0.1	< 0.5	0%	133%*
Pyrene	<0.1	<0.1	< 0.5	0%	133%*
Benzo(a)anthracene	<0.1	<0.1	< 0.5	0%	133%*
Chrysene	<0.1	<0.1	< 0.5	0%	133%*
Benzo(b,j+k)fluoranthen					
e	<0.2	<0.2	< 0.5	0%	86%*
Benzo(a)pyrene	<0.05	<0.05	< 0.5	0%	164%*
Indeno(1,2,3-c,d)pyrene	<0.1	<0.1	< 0.5	0%	133%*
Dibenzo(a,h)anthracene	<0.1	<0.1	< 0.5	0%	133%*
Benzo(g,h,i)perylene	<0.1	<0.1	< 0.5	0%	133%*
Benzo(a)pyrene TEQ calc					
(zero)	<0.5	<0.5	< 0.5	0%	0%
Benzo(a)pyrene TEQ					
calc(half)	<0.5	<0.5	0.6	0%	18%
Benzo(a)pyrene TEQ calc(PQL)	<0.5	<0.5	1.2	0%	82%*
Total Positive PAHs	NIL (+)VE	NIL (+)VE	0	-	-
Total PAHs	<1.55	<1.55	< 0.5	0%	102%*

Analyte	Analyte C	oncentration T	Relative Percentage Difference of Blind Replicate	Relative Percentage Difference of Split Replicate	
Sample Number	9528/W2	9528/W2a	9528/W2b	%	%
Laboratory	Envirolab Services Pty Ltd	Envirolab Services Pty Ltd Blind	Eurofins mgt	-	-
Replicate Description	Primary Sample	Replicate of 9528/W2	Split Replicate of 9528/W2	-	-
TRH C6 - C9	<10	<10	< 0.02	0%	67%*
TRH C6 - C10	<10	<10	< 0.02	0%	67%*
vTPH C6 - C10 less BTEX (F1)	<10	<10	<0.02	0%	67%*
Benzene	<1	<1	< 0.001	0%	0%
Toluene	<1	<1	< 0.001	0%	0%
Ethylbenzene	<1	<1	< 0.001	0%	0%
m+p-xylene	<2	<2	< 0.002	0%	0%
o-Xylene	<1	<1	< 0.001	0%	0%
naphthalene	<1	<1	< 0.01	0%	164%*

TRH C10 - C14	<50	<50	< 0.05	0%	0%
TRH C15 - C28	<100	<100	< 0.1	0%	0%
TRH C29 - C36	<100	<100	< 0.1	0%	0%
TRH >C10-C16	<50	<50	< 0.05	0%	0%
TRH >C10 - C16 less					
Naphthalene (F2)	<50	<50	< 0.05	0%	0%
TRH>C16-C34 (F3)	<100	<100	0.1	0%	0%
TRH>C34-C40 (F4)	<100	<100	< 0.1	0%	0%
Xylenes	<3	<3	< 0.003	0%	0%
Arsenic	9	8	0.011	12%	20%
Cadmium	<0.1	<0.1	< 0.0002	0%	67%*
Chromium	<1	<1	0.003	0%	100%*
Copper	2	2	0.001	0%	67%*
Lead	<1	<1	< 0.001	0%	0%
Mercury	<0.05	<0.05	< 0.0001	0%	67%*
Nickel	7	7	0.002	0%	111%
Zinc	26	24	< 0.005	8%	135%*
Naphthalene	<0.2	<0.2	< 0.001	0%	133%*
Acenaphthylene	<0.1	<0.1	< 0.001	0%	164%*
Acenaphthene	<0.1	<0.1	< 0.001	0%	164%*
Fluorene	<0.1	<0.1	< 0.001	0%	164%*
Phenanthrene	<0.1	<0.1	< 0.001	0%	164%*
Anthracene	<0.1	<0.1	< 0.001	0%	164%*
Fluoranthene	<0.1	<0.1	< 0.001	0%	164%*
Pyrene	<0.1	<0.1	< 0.001	0%	164%*
Benzo(a)anthracene	<0.1	<0.1	< 0.001	0%	164%*
Chrysene	<0.1	<0.1	< 0.001	0%	164%*
Benzo(b,j+k)fluoranthene	<0.2	<0.2	< 0.001	0%	133%*
Benzo(a)pyrene	<0.1	<0.1	< 0.001	0%	164%*
Indeno(1,2,3-c,d)pyrene	<0.1	<0.1	< 0.001	0%	164%*
Dibenzo(a,h)anthracene	<0.1	<0.1	< 0.001	0%	164%*
Benzo(g,h,i)perylene	<0.1	<0.1	< 0.001	0%	164%*
Benzo(a)pyrene TEQ calc			_		
(zero)	<0.5	<0.5	0	0%	-
Benzo(a)pyrene TEQ calc(half)	<0.5	<0.5	0	0%	_
Benzo(a)pyrene TEQ		.0.0	y	0,0	
calc(PQL)	<0.5	<0.5	0	0%	-
Total Positive PAHs	NIL (+)VE	NIL (+)VE	0	-	-
Total PAHs	<1.7	<1.7	< 0.001	0%	52%*
Phenols	<0.05	<0.05	<0.032	0%	44%
EC	15000	15000	12000	0%	22%

рН	7.1	7.1	6.8	0%	4%		
*Depute less then three times the leherater date time limits							

Analyte	Analute	Concentration To	tals (ug/L)	Relative Percentag e Difference of Blind Replicate	Relative Percentag e Difference of Split Replicate
Analyte	9528/WDT/W	9528/WDT/W1	9528/WDT/W1	Replicate	Replicate
Sample Number	1 Envirolab	a Envirolab	b	%	%
	Services Pty	Services Pty			
Laboratory	Ltd	Ltd Blind	Eurofins mgt Split Replicate	-	-
Replicate Description	Primary Sample	Replicate of 9528/WDT/W1	of 9528/WDT/W1	-	
TRH C6 - C9	<10	<10	<20	0%	67%*
TRH C6 - C10	<10	<10	<20	0%	67%*
vTPH C6 - C10 less BTEX					
(F1)	<10	<10	<20	0%	67%*
Benzene	<1	<1	<1	0%	0%
Toluene	<1	<1	<1	0%	0%
Ethylbenzene	<1	<1	<1	0%	0%
m+p-xylene	<2	<2	<2	0%	0%
o-Xylene	<1	<1	<1	0%	0%
naphthalene	<1	<1	<10	0%	164%*
TRH C10 - C14	<50	<50	<50	0%	0%
TRH C15 - C28	<100	<100	<100	0%	0%
TRH C29 - C36	<100	<100	<100	0%	0%
TRH >C10-C16	<50	<50	<50	0%	0%
TRH >C10 - C16 less Naphthalene (F2)	<50	<50	<50	0%	0%
TRH>C16-C34 (F3)	<100	<100	100	0%	0%
TRH>C34-C40 (F4)	<100	<100	<100	0%	0%
Valence	12	-2		0%	00/
Xylenes	<3	<3	<3	0%	0%
Arsenic	<1	<1	<1	0%	0%
Cadmium	<0.1	<0.1	<0.2	0%	67%*
Chromium	<1	<1	<1	0%	0%
Copper	2	2	2	0%	0%
Lead	<1	<1	<1	0%	0%
Mercury	<0.05	<0.05	<0.1	0%	67%*
Nickel	1	1	<2	0%	67%*
Zinc	4	5	<5	22%	22%

Naphthalene	<0.2	<0.2	<1	0%	133%*
Acenaphthylene	<0.1	<0.1	<1	0%	164%*
Acenaphthene	<0.1	<0.1	<1	0%	164%*
Fluorene	<0.1	<0.1	<1	0%	164%*
Phenanthrene	<0.1	<0.1	<1	0%	164%*
Anthracene	<0.1	<0.1	<1	0%	164%*
Fluoranthene	<0.1	<0.1	<1	0%	164%*
Pyrene	<0.1	<0.1	<1	0%	164%*
Benzo(a)anthracene	<0.1	<0.1	<1	0%	164%*
Chrysene	<0.1	<0.1	<1	0%	164%*
Benzo(b,j+k)fluoranthen	<0.2	<0.2	<1	0%	133%*
e Benzo(a)pyrene	<0.2	<0.2	<1	0%	164%*
Венго(а)ругене	<0.1	<0.1	1/	070	10470
Indeno(1,2,3-c,d)pyrene	<0.1	<0.1	<1	0%	164%*
Dibenzo(a,h)anthracene	<0.1	<0.1	<1	0%	164%*
Benzo(g,h,i)perylene	<0.1	<0.1	<1	0%	164%*
Benzo(a)pyrene TEQ calc					
(zero)	<0.5	<0.5	0	0%	-
Benzo(a)pyrene TEQ					
calc(half)	<0.5	<0.5	0	0%	-
Benzo(a)pyrene TEQ calc(PQL)	<0.5	<0.5	0	0%	-
Total Positive PAHs	NIL (+)VE	NIL (+)VE	0	-	-
Total PAHs	<1.7	<1.7	< 0.001	0%	52%*
Phenols	<0.05	<0.05	<0.032	0%	44%
EC	560	560	660	0%	16%
pH	7.3	7.3	7.1	0%	3%

Laboratory QA/QC

Envirolab Services Pty Ltd and Eurofins | mgt both comply with the minimum Laboratory QA/QC requirements as established in Section 10.1.6, which include performing the following:

- At least one blank every 20 samples;
- At least one Laboratory control sample every 20 samples;
- At least one duplicate every 10 samples; and

• At least one matrix spike every 20 samples.

The laboratories have met the previously determined QA/QC requirements. The QA/QC data is considered satisfactory and the quality of the analytical results considered suitable for the purposes of the soil sampling.

Field Replicates QA/QC

All QA/QC data is either within the RPD or the result was less than three times the laboratories limit of reporting. The data is considered satisfactory to meet the predetermined data quality objective.

Strict field QA procedures were applied to all stages of sample collection, preparation and equipment decontamination and were conducted in accordance with industry accepted standards and Getex's standard operating and field quality procedures. Fieldwork was undertaken by experienced and professionally qualified environmental scientists.

The QA/QC data is considered satisfactory and the quality of the sampling data considered suitable for the purposes of the sampling conducted.

APPENDIX VI

SAFEWORK SEARCH DOCUMENTS

SafeWork NSW 92-100 Donnison Street, Gosford, NSW, 2250 Locked Bag 2906, Lisarow, NSW, 2252 | Customer Service Centre 13 10 50 licensing@safework.nsw.gov.au | www.safework.nsw.gov.au

Our Ref: D16/622921 Your ref: Justin Thompson-Laing

8 July 2016

Attention: Justin Thompson-Laing Getex Pty Ltd Suite 2.02, Bldg 2 35-41 Waterloo Rd Macquarie Park NSW 2113

Dear Mr Thompson-Laing,

RE SITE: 19 Queen St Narellan NSW

I refer to your site search request received by SafeWork NSW on 29 June 2016 requesting information on Storage of Hazardous Chemicals for the above site.

A search of the records held by SafeWork NSW has not located any records pertaining to the above mentioned premises.

For further information or if you have any questions, please call our Customer Service Centre on 13 10 50 or email <u>licensing@safework.nsw.gov.au</u>

Yours sincerely,

Brent Jones Customer Service Officer Customer Service Centre - Operations SafeWork NSW